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NOMENCLATURE

E o Macroscopic physical velocity
PP Physical relaxation time
Fi(0) o Density distribution function
FrE (308 e Equilibrium density distribution function
PP PRPNPRPRPRN Lattice link
€y ettt Lattice velocity in the i" direction
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CHAPTER 1
INTRODUCTION
1.1 Colloids

Colloids are chemical mixtures with one substance dispersed into the other.
Colloids are characterized by a high surface to volume ratio or surface to mass ratio.
This enables their inter-particle forces to alter the gravity effects. The focus of this work
is on emulsions, one type of colloids in which the continuous medium and the dispersed
phase are both immiscible liquids, although the proposed model can handle with
comfort other types of colloids such as foams and liquid aerosols.

The study of droplet-base immiscible mixtures is of high interest for broad range
of research works in the food, medical, cosmetic, polymer, water purification and
pharmaceutical industries. Macro-emulsions such as water-in-oil (W/O) or oil-in-water
(O/W) are indispensable in the makeup of a great number of frequently used products.
To satisfy a large and diverse market demands, polymer manufacturing industries strive
constantly to supply new blends with enhanced thermal and mechanical behavior.
Droplet-based microfluidic systems provide a highly controllable platform for
applications such as micro-reactors, drug delivery systems and information carriers on
microfluidic chips containing digital logic gates.

The control of the droplet size during the production of such systems is of
extreme importance. Conventional methods such as rotor-stator or more current
methods like membrane emulsification (van der Graaf, 2006) are used to control the
droplet size of an emulsion during formation. The required morphology of polymer

blends is dependent on the rapid establishment of the equilibrium between droplet
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break up and coalescence (Sundararaj and Macosko, 1995). Microfluidic droplets have
to be generated in a specific frequency and sizes in order to deliver stable and repetitive
functions.

The control of the droplet size is accomplished mainly by the addition of surface
acting agents (surfactants), which adhere to the droplet interface and reduce the
interfacial tension. Surfactants play also an important role in suppressing coalescence
of the dispersed phase, and they affect the rheology of the droplet—based immiscible
mixtures as a result of the intricate interplay of the evolution of surfactant distribution,
drop deformation and the bulk flow (Vlahovska and Loewenberg, 2005).

Biological fluids such as saliva, urine, blood, etc are macro-colloids by nature.
One of the most interesting biological fluids is blood. Blood is a biological suspension
composed of 55% plasma and 45% formed elements of which 99.5% are red blood cells
(RBC), 0.13% white blood cells (WBC) and 4.9% platelets. In the capillaries the
membrane of the RBC fluidizes under pressure, making it feasible to approximate the
cell as a surfactant covered droplet.

Historically polymer production in the USA was characterized by an exponential
growth as shown in Fig 1.1 (A) (Chemical and Engineering News, 1996). 40% of this
production serves as functional materials such as cosmetics, pharmaceuticals, printing
ink, paints, super-absorbers in hygienic products, etc.

Another area of relevance to this study is the investigation of biological
suspensions, in particular blood and blood related diseases. In 2004 an estimated
223,000 death were due to blood diseases. 214,000 were caused by blood-clotting

disorders a major contributor to acute myocardial infarction (AMI) and cerebrovascular
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diseases. 9,000 were attributed to red blood cell and bleeding disorders. Blood clotting
disorders were expected to cost the nation’s economy an amount of 105 billion, in
addition to 14 Bilion Dollars due to other blood diseases in 2008
(www.nhlbi.nih.gov/about/factbook-07). Figure 1.1 (B) shows the mortality rate due to

blood related diseases in 2004.

AMI T Other
48.0% Atherosclerosis
ANNUAL US PRODUCTION OF POLYMERS ] 1.8%
w
80 - % Pulmenary
70 4 embolism
60 a 1.6%
50 S
40 4 (72}
30 - o
I -
10 4 - Stroke
0 =l_lf_l|_| Bl 1y 42 6%
1945° 1950 1955198011987 197111974 11977 11981" 1985 1990" 1995’ and Red cell _
YEAR Disecases

4%
. Blood clothing disorders 96.0 %

Fig 1.1 (A) Annual US polymers production showing an exponential growth. (B) Death
percentage rate in the US in 2004 due blood-related diseases.

2.1Numerical methods for colloidal studies

The last couple decades have witnessed a considerable advancement in the
computer technology which manifested itself by an exponential growth in computing
powers. This made it possible to explore the full potential of an already matured branch
of mathematics (numerical methods) which became a primary tool for the study of a
variety of fluid problems. Colloids and biological suspensions had been the subject of
investigations by a great number of numerical researchers who used large diversity of
methods such as the boundary integral (Millikan et al., 1993; Li and Pozradikis, 1997;
Eggleton et al., 2001; Feigl et al., 2007), the volume of fluid method (Drumright-Clarke,

2002; Drumright-Clarke and Renardy, 2004), the finite element mehtod (Kruijt-
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Stegeman et al.; 2004), the immersed boundary method (Lai et al.; 2008), the lattice
Boltzmann method (LBM) (van der sman and van der Graaf, 2006). These methods
were used for the study of colloids. Another methods were used for the study of blood
flows, such as the immersed finite element method (Liu and Liu, 2006), the particle
method (Tsubota and Yamagushi, 2006), the LBM (Dupin et al., 2003; Dupin et al.
2005; Sun and Munn, 2005) and the hybrid LBM (Dupin et al., 2007). In this work an
accelerated multi-component LBM scheme with incorporated surfactants effects will be

proposed and used for the study of colloids and biological fluids.
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CHAPTER 2
RESEARCH RELATED STUDIES

3.1The lattice Boltzmann method

Computational fluid dynamics (CFD) represents a powerful tool for the study of
complex multi-phase and multi-component flows. Drop formation, deformation,
coalescence and brake-up continues to be the focus of many research works, devoted
for a better understanding of microfluidic, colloids and polymers properties. Among
many CFD tools, the lattice Boltzmann method (LBM) has attracted some attention
during the last couple decades due to the simplicity of its algorithm, stability, and
parallelism.
a. The single component LBM

The Bhatnagar-Gross-Krook (BGK) lattice Boltzmann method is an alternative
computational technique used for solving a broad range of fluid problems. The
isothermal, single-relaxation model is derived from the following Boltzmann kinetic

equation (Yu et al. 2002):
ey L pa
dl+r§ vf z(f ) (2.1)

where f'is the density distribution function,is the macroscopic velocity, f“is the
equilibrium distribution function, and Ais the physical relaxation time. Equation (2.1) is
first discretized by using a set of velocities & confined to a finite number of directions

and this leads to the following equation:

dfi gy Lip_ ru
e V== Ui ) (2.2)

www.manaraa.com



The LBM is based on a set of equivalent Cartesian velocities. The D2Q9 BGK described
here has nine velocity direction vectors (lattice links) shown in Fig 2.1 (A) with the

following end points coordinates:

€,(0,0);e,(-11);e,(0,1);e5(1,1);e,(1,0)e5(1,—1);€,(0,—1);e, (—1,—1);¢,(—1.0) (2.3)

(A) (B)

€ Co C3
A

Z

C3 € > Cq
v

& e B, \\.-

Fig 2.1 (A) Velocity vectors for the D2Q9 and (B) for the D3Q19 lattice Boltzmann
method used in this study.

Figure 2.1 (B) show the lattice links for the D3Q19 model. Equation (2.2) is

further discretized in the lattice space and time and this leads to the following:
1 e
Six+e8,t+0)= f,(x.0) == —[f,(x.0)= 7 (X)] (2.4)

The lattice spaceo and the lattice time stepd,are taken as unity and their ratio
c=4,/6, =lis the lattice velocity. The lattice speed of sound is used for determining the

fluid pressure by p=pc?, and the lattice relaxation time ist=14/6. The kinematic

viscosity is derived from the relaxation time by the following formula:

v=(r-0.5)cl5, (2.5)
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The equilibrium distribution function of Eq. (2.4) is calculated as follows:
ffq=,0a)l.[1—i-izci-u+i4(cl.-u)2 —izu-u] (2.6)
c 2c 2c

wherec, = e, /5, is the lattice velocity in the i” direction, ». are the weighting constants for
the various lattice links:

® =[4/9;1/36;1/9;1/36;1/9;1/36;1/9;1/36;1/9] (2.7)
uand p are the macroscopic velocity and density, respectively. The macroscopic density

and momentum are calculated from the distribution function as follows:

p=21=2 1" (2.8)

0-1 0-1
pu=Y cf = e/ (2.9)
i=1 i=1

where Qdepends on the dimension and the type of the LBM model.

Through a Chapman-Enskog expansion in the low frequency, long wavelength
limits, and at low Mach number, the LBM can recover the Navier-Stokes equations to a
second order accuracy if the right choice of the equilibrium distribution function is used
(Chen et al., 1992; Guo et al., 2000; Latt, 2007).
b. The multi-component LBM

The most famous multi-component LBM schemes are the Gunstensen model
(Gunstensen et al., 1991) and the particle-interaction-potential model (Shan and Chen,
1993; Shan and Chen, 1994). Both schemes were used in this work.

The Gunstensen model

The Gunstensen model identifies a red and a blue momentum distribution

functions asR/(x,t) andB(x,t), where xandrare the nodal position and time,
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respectively. The total momentum distribution function is the sum of the two functions
(Gunstensen et al. 1991):
fi(x,t)=R.(x,t)+ B,(x,t) (2.10)
The main difference between the two-component and the single component LBM
is the modification of the collision rules in order to induce surface tension and segregate
the two immiscible fluids. This is achieved by applying two-step collision rules
(Gunstensen et al.,, 1991; Halliday et al., 2005; Halliday et al., 2006; Halliday et al.,
2007, Hollis et al., 2007; Reis and Philip, 2007). The main streaming and collision

function is expressed as follows:

f;(x+cié;’t+é‘t) :fi(xat)_%{ﬁ(xat)_fieq(p’p”)}+¢i(x) (21 1)

where ¢, is the lattice velocity vector in the i" direction shown in Fig. 2.1, 7 is the lattice
relaxation time, ¢ (x) is a source term used to induce an interfacial pressure step in the

fluid mixture as per Lishchuk’s interface method (Lishchuk et al., 2003; Lishchuk et al.,
2008). The source term can also enclose a force in the flow direction, which causes fluid
circulation. To define the interface between the two fluids, a phase field is described as

follows (Halliday et al. 2007):

_ R(x,0)- B(x,1) (2.12)

P = D Bl

where N indicates the direction normal to the interface and the nodal red and blue

densities are expressed by the following:

R(x,t)= QZ_iRi (x,0) (2.13)
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B(x,t)z%Bi(x,t) (2.14)

The two fluids can have different viscosities. This requires the use of different relaxation
times in Eq. (2.5). The interface is made of a fluid mix; therefore its viscosity is

determined by the following equation (Dupin et al. 2003):

R B
Veff :(Teﬁp —O.S)Cfé‘t :(mjVR +(R+BJVB (215)

Lishchuk’s interface method is implemented to create a pressure step across the

interface. The following surface tension force F(x)is used (Lishchuk et al. 2008):
F(x):—%akVpN (2.16)

where Vp" =0for a constant phase field. This means that this force is only applicable on

the interface. «is a surface tension parameter and kis the curvature of the interface. &
is obtained from the surface gradients by solving the following equation using the finite

difference method (Lishchuk et al., 2003):

0 0
k=nn on, o —nii—#% (2.17)
"oy ox oy T ox

where n_,n, are the xand ycomponents of the interface normal vector

nE—VpN/‘VpN‘. F(x)from Eq. (2.16) is used to correct the velocity by Guo’s

methodology (Guo et al., 2002; Dupin et al., 2003) as follows:

. 1 & 1
u :—{Zficl.-i-EF(x)} (2.18)

i=1
The relation between the macroscopic and a spatially varying lattice source term is by

the following:
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T

$(x)=w, (1—%)[3(@ —u')+9(c,-u")c, |- F(x) (2.19)

where u'is the corrected velocity from Eq. (2.18). For constant body force this

relationship is expressed by the following equation (Halliday et al. 2007):
¢ =0, —F ¢ (2.20)

where k,=1/3and Fis a constant macroscopic force such as a body force. The first
collision is then applied using the corrected velocities in the calculation of the
equilibrium distribution function f“/(p, pu). The second step is the segregation of the

two fluids which is achieved by imposing zero diffusivity of one color into the other

(Gunstensen et al., 1991). A local color gradient is identified as follows:

G(x,0)=Y ¢, (R (x+c.0)-B,(x+¢c,.1)) (2.21)
ij
A local color flux is calculated by the following formula:

J=>¢(R(x,0)-B/(x,1)) (2.22)

The segregation step is achieved by forcing the local color flux to align with the direction
of the local color gradient. Thus the colored distribution functions at the interface are

redistributed such that-J-Gis maximized with the following constraints:

R(x.0)=R(x.t
2 R0 = R0 (2.23)

B(x,0) = [,(x,0)~ R(x,0)

where éi,ﬁ,ﬁiare the post-collision post-segregation blue, total, and red distribution

functions respectively. The segregation can also be accomplished by a formulaic means
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as described in the model of Halliday et al. (2007) in accordance with the method of

D’Ortona et al. (1995):

2 R - RB
(ot +8) = [(61+8)+ B o6, =)
R(xt+8) =" xt+0)+f— — o6, ~0)] ¢ 220

Lo

B - RB
X,t+0)=——f(x,t+0)—f——acos(0,-0)|c
(1+0) =4 ixt+0) =P ac(,-G)|¢ |

where 6,and 6 are the polar angle of the color field, and the angle of the velocity link

respectively, fis the segregation parameter. After the segregation process the two

components propagate separately as follows:
R(X+¢3,1+8)=R(x,t+5) (2.25)

B(x+¢0,0+38)=B.(x,1+5) (2.26)
In the proposed work the Gunstensen (numerical) and D’ortona (formulaic) segregation
methods were used although the numerical method produces thinner interface required
for the application of the model for problems with droplets of relatively small diameter.
The Shan and Chen model
The Shan and Chen model is suitable for simulating multiphase and multi-
component flows. The model uses the following interaction force between the particles

of the same specie (Sukop and Thorne, 2006):

F(x,t)=-Gy(x, t)% oy (x+c0,,t)c, (2.27)

i=0 l
where Gis an interaction strength constant which determines the magnitude of the
interaction force, and its sign imposes attraction (negative) or repulsion (positive)

between the fluid particles. y is a potential function of the density, it must be monotonic

and bounded (Shan and Chen, 1993; Shan and Chen, 1994):
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w(p)=v,exp(=p,/p) (2.28)

where y, and p,are constant used to control the potential function. The equilibrium

velocity u* used for the calculation of the equilibrium distribution function prior to the
collision step has to be modified and the interaction force has to be imposed using the
method of Buick and Greated (2000) for applying an external force into the LBM:

L (2.29)

Yo,
where uand p are the macroscopic velocity and density calculated by Eq. (2.8) and Eq.
(2.9). With the modified equilibrium distribution function, a Chapman-Enskog expansion
leads to the recovery of the isothermal Navier-Stokes equation (Shan and Chen, 2003).

The pressure-density relationship is governed by the following equation of state (EOS):

2
- c?+G‘/’ (p)c? 2.30
P = pc; 5 G (2.30)

The multi-component SC model deals with more than one fluid; therefore a
composite macroscopic velocity is used to account for all the constituents of the

mixture. Equation (2.8) and Eq. (2.9) are thus replaced by the following (Sukop and

Thorne, 2006):

0-1 0-1
pd = f;a = f;cr,eq (2.31)
i=0 i=0
0-1
WA

- — (2.32)

where o refers to the various mixture contributing components, z°is the individual
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component relaxation time from which different fluids viscosities can be derived using
Eq. (2.5).
The fluid-fluid interaction force is represented by the following equation (Martys and

Chen, 1996):
ot
F°(x,t)=—p° (x,t)z Gw.z,o" (x+c¢0,,t)c, (2.33)
o' i=0

where F°(x,t)is the interaction force exerted on component o by the neighboring

component o' in the mixture. It is worth mentioning that the magnitude of this force,
which creates a pressure jump across the fluid-fluid interface, is dependent on the

constant G_.and it determines the strength of the surface tension.

The fluid-solid interaction force exerted by each fluid component is expressed as

follows (Martys and Chen, 1996):

0-1
N°(x,0)==p°(x,0))_ G S(x+¢3,)c, (2.34)

i=0
where S(x+¢,5,) can only have a zero value for neighboring fluid node, and one for
neighboring solid node respectively. G?, determines the interaction strength and it is

positive for non-wetting fluid, and negative for wetting fluid. The force due to gravity is

incorporated in the model through the following:
E°(x,0)=p°(x,1)g (2.35)
where gis the gravitational constant. The collision step is calculated by the following

equation:

ff’(x,tﬂi)=J?"(x,t)—r—lc,[ﬁ”(x,t)—ﬁ"’e"(p,pu”’“’)] (2.36)
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where ﬁ"refers to post-collision distribution functions for the various fluids, andz” are

their corresponding relaxation times. The equilibrium functions for the constituent fluids

are calculated by Eq. (2.6) using the following equilibrium velocities:

. 7°(F°+N°+E°)
u -+ ~

Yo,

o.eq __

u

(2.37)

The streaming step is executed for the various fluids using the following equation:
£ (x+¢d,t+68)=f7(x,t+5) (2.38)
This is followed by calculating the macroscopic observables using Eq. (2.31) and Eq.
(2.32).
c. Grid refinement methods

To extend the applicability of the LBM to a variety of problems including those
with turbulent flows, flows in complex geometries like porous media and special
boundary shapes, several models were introduced to improve the LBM results quality,

and to save computational time (Filippova and Hanel, 1998; He and Doolen, 1997; He et al.,
1996; Huang et al., 2007; Imamura et al., 2005; Kandhai et al., 2000; Li et al., 2005; Lin and Lai,
2000; Liu et al., 2009; Shu et al. 2001; van der Sman, 2004; Yu and Girimaji, 2005; Yu et al.,
2002). These models can be classified either by the method used: interpolation, hybrid
LBM, and grid refinement, or by the nature of the grid: structured and unstructured gird.
Interpolation method was first used by He et al. (1996), who noticed that the
density distribution function is continuous in the physical space; therefore it was
possible to define it on non-uniform grid through interpolation. The method was further
extended by Shu et al. (2001), and Li et al. (2005) who used Taylor series expansion

and least square to evaluate the distribution function instead of direct interpolation.
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Inamuro et al. (2005) used local time step on non-uniform grid to accelerate the solution
since each grid point had its own time step based on the local advection time stability
condition.

Hybrid LBM for unstructured grid combined LBM with traditional CFD tools like
finite difference, finite volume, and finite element. Hybrid LBM benefited from the LBM
stability, resulting from the use of the particle instead of macroscopic velocity. This
guaranteed the satisfaction of the Courant-Friedrichs-Lewy (CFL) stability condition.
Hybrid LBM gained also the accuracy and efficiency of the traditional CFD tools
(Kandhai et al., 2000; Huang et al., 2007).

An interesting unstructured LBM model was proposed by van der Sman (2005),
in which no interpolation was required, since particle velocity in this model was different
for different lattice sites. This led to the elimination of the undesired numerical diffusion
caused by the interpolation step.

Grid refinement methods worked by locally refining the mesh in parts of the
domain characterized with complex geometry, and where higher accuracy was required.
Filippova and Hanel (1998) introduced the first model which was based on passing data
from the post collision distribution functions between the coarse and fine grids. The
transfer of data maintained continuous viscosity and therefore Reynolds number
throughout the domain. The model handled very well complex geometries by specially
treating curved boundaries. Lin and Lai (2000) proposed a composite block-structured
LBM in which a coarse grid covered the whole domain and only areas of interest were
patched with a fine grid blocks. This method did not need time interpolation, because

solutions on both grids were at the same time level. Yu et al (2002) suggested a very
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efficient multi-block method in which fine and coarse grids did not overlap throughout
the fine grid block, and data transfer occurred only at the interface boundary nodes.
This method was later expanded to three dimensional models by Yu and Girimaji
(2005).

Multiphase and multi-component flows were not as extensively studied with
respect to grid refinement, as turbulent flows and near-solid boundary phenomena. The
peculiarity of the multi-component flows is due to the movement and deformation of the
suspended fluid. This hampers the use of preset grid refinement techniques since the
area of interest is not fixed in the domain. Tolke et al (2006) proved in their Gunstensen
based LBM, that the interface was distorted relative to the magnitude of the capillary
forces. This was observed when they allowed the fluid interface to pass through the grid
interface of different preset fixed grids. They also indicated through a mathematical
model that the grid level which could be used in such cases was very restricted. Thus
they resorted to the use of an adaptive grid method, in which the physical interface was
always discretized on the finest grid level. Ozawa et al (2005) presented a model for
multi-phase flow, with an adaptive unstructured grid. Ozawa et al (2005) used cubic
interpolation with volume/area coordinates method for the streaming step and moving
least-square method for the collision step. The mesh was refined based on a number
density threshold using Bisection algorithm.

The grid refinement method of Yu et al (2002) will be extended in this work in
what will be called the migrating multi-block scheme in order to allow its use for

multiphase and multi-component flows. Yu et al (2002) proposed the following
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relationships between the distribution functions of the various blocks shown in Fig 2.2.
The grid spacing ratio is expressed through the following equation:

P
m=—xe (2.39)

5x,f

The relationship between the relaxation times of the various blocks is expressed as

follows:
1
7, =E+m(rc -0.5) (2.40)

The exchange of data between the various blocks occurs at the grid interface where fine

and coarse nodes overlap through the following:

j;;f :f;eq’c+ Tf—l [ﬁc_ﬂeq’c] (241)
m(z, —1)

7= £ Q_l[ﬁf_ﬁmj] (2.42)
(Tf - 1)

where the post-collision distribution function of the fine grid isfif, while ff is the post-

collision distribution function of the coarse grid. A symmetrical cubic spline interpolation
was used for spatial interpolation of the post-collision distribution functions on the fine
block boundary.

A three-point Lagrangian formula was implemented in order to synchronize the

time steps in the various blocks (Yu et al. 2002):

Fo=Y1/ ) n (2.43)

q=Lpzq  —
tp tq

where p, g are positive integers ranging from 1 to 3.
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Fig 2.2 lllustration of the grid interfaces between the fine and the coarse block from the
proposed multi-block scheme.

2.1Colloidal studies
a. Surfactant-laden droplets

Surfactant-covered droplets were investigated experimentally, analytically and
numerically. Sundararaj and Macosko (1995) studied the role of compatibilizers in
stabilizing the morphology of some polymer blends as a result of suppressing the
coalescence of the dispersed phase. Williams et al. (1997) investigated the effects of
protein emulsifiers on the breakup of a single aqueous drop in shear flow, and found out
that at high emulsifier concentrations the drop size was two orders of magnitude smaller
than the expected size from its equilibrium interfacial tension. Lyu et al. (2002) used
block copolymer to reduce the particle size in polymer blends and attributed this
process to the steric repulsion which depended on the surfactant molecular weight. Hu
and Lips (2003) delineated the individual effects of the dilution, the Marangoni stress

and the tip stretching on surfactant covered mother drop by measuring the interfacial
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tension of the subdivided generations of daughter drops. Almatroushi and Borhan
(2004) examined the effect of surfactants on the buoyancy of bubbles and viscous
drops in a bounded domain.

Vlahovska (2003) and Vlahovska et al. (2005) developed analytical solutions for
the small perturbation of the surfactant distribution, which influenced the drop evolution
in linear flows. The solutions for the system were formulated as a nonlinear matrix
equation after expanding the velocity, surfactant concentration and the drop shape in
spherical harmonics.

Milliken et al. (1993) studied the effect of dilute insoluble surfactant on the
deformation of a drop in uniaxial extensional flow using boundary integral technique to
describe the motion of the drop interface, and finite difference scheme for the mass
transfer at the interface. Li and Pozridikis (1997) used similar numerical approach with
a linear surfactant equation of state to study the transient deformation of spherical drop
with viscosity ratio of one with respect to the matrix. Eggleton et al. (2001) studied tip
streaming and drop breakup dependence on the surfactant initial coverage in linear
extensional flow. Their model used boundary integral formulation for the Stokes
equations, Runge-Kutta method for the interface time evolution and finite difference for
the mass balance equation. Drumright-Clarke (2002) and Drumright-Clarke and
Renardy (2004) used the volume of fluid method to track the interface, the projection
method to solve the Navier-Stokes equations and the continuum method for the surface
tension to model the effects of dilute insoluble surfactant on a drop in strong shear flow.
Kruijt-Stegeman et al. (2004) used a finite element method to study the transient

deformation of drops in supercritical elongational flow and the breakup of elongated
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drops in quiescent medium with low surfactant coverage. The surface tension was
incorporated into the finite element as a volume force. Lai et al. (2008) proposed an
immersed boundary method for modeling fluid interfaces with insoluble surfactant in 2D
geometries. A symmetric discretization for the surfactant concentration was employed to
insure surfactant mass conservation numerically. Finally van der Graaf (2006) and van
der Sman and van der Graaf (2006) used a free energy based LBM to develop a diffuse
model for studying the adsorption of surfactant onto flat and drops interfaces. The
model was tested briefly in 2D linear shear and uniform flow fields to show its
applicability when coupled to the hydrodynamics.
The following studies (Lyu et al., 2002; Jeon and Makosco, 2003; Milliken et al.,
1992; Hu and lips, 2003; Cheng et al., 2005; Sundaraj and Makosco, 1995;
Kleshchsnok and Lang, 2007) provide a good understanding of the physical interaction
and deformation of droplets during their formation and breakup. The following facts are
selected due to their relevance to the subject of this work:
e Surfactants reduce the surface tension and therefore enhance the deformability

of the droplets by simply increasing their capillary number. The capillary number is the

: . Ry , : :
ratio of the viscous stress and the Laplace pressure Ca ='u—7/, where 4 is the viscosity
a

of the suspending fluid R is the droplet radius, yis the shear rate, and « is the surface

tension. The surfactant role is affected by three additional mechanisms namely; surface
dilution, which is due to the increase of the droplet area during deformation, tip-
stretching which is caused by the convection of the surfactant towards the droplet tips
due the bulk flow and the Marangoni stresses originating from the gradient in the

surfactant concentration along the interface.
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e Surfactants suppress coalescence leading to stabilization of the colloids. There
are two different theories for the explanation of the suppression of coalescence shown
in Fig 2. 3; the first (Fig 2.3(A)) advocates that the Marangoni stresses increase on the
opposing interfaces due to the squeeze of the matrix between the droplets. This retards
the local interface velocity, thus slows down the film drainage and consequently
prevents coalescence. The second (Fig 2.3 (B)) claims that the suppression of
coalescence is due to steric repulsive force generated by the compression of the
surfactant layers, which are attached to the surfaces of two approaching droplets, and
that steric repulsion is a surfactant molecular weight dependent force (Lyu et al.; 2002).
Experimental works (Lyu et al., 2002; Kleshchanok and Lang, 2007) showed that block
copolymers with higher molecular weights have greater tendency to suppress
coalescence.

e Surfactants could also lead to aggregation or what is called adsorption
flocculation. Two models are distinguished to explain this phenomenon. The bridging
model (Lyu et al., 2002) is based on the principle that the adsorbed macromolecules on
adjacent droplets surfaces create a bridging force which exceeds the forces of
disaggregation, hence enhancing flocculation. The depletion model (Neu and
Meiselman, 2002) proposes that droplets aggregation is due to an exclusion of the
macromolecules from the droplet interface which creates an osmotic pressure

difference favoring aggregation.
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Fig 2.3 Two mechanisms for suppressing coalescence are presented here. (A)
Surfactant concentration gradient. (B) Steric repulsion (Lyu et al., 2002).

e It is generally agreed that the following interaction forces are at work between
two approaching surfactant covered droplets; steric repulsive interaction, electrostatic
repulsive interaction, the van der Waals attractive interaction, and the bridging or
depletion interactions. The resultant of these combined forces determines whether
coalescence will occur or not. This force description does not deviate from the
explanation given by Lipowski and Sakmann (1995) on the nature of force interactions
between two biological membranes (with the exception of the presence of a repulsive
hydration force). These forces decay depending on the distance between the droplets
either by an exponential or by inverse square laws.

e Surfactants generally reduce significantly the particles terminal velocity below the
classical Hadamard-Rybszynski prediction in the spherical region of the shape regime;
however in other shape regions the particle retardation due to surfactants is less
effective (Tasoglu et al., 2008).

b. Colloids rheology
Colloids are non-Newtonian fluids, i.e. their relative viscosity is dependent on the
shear rate in the bulk flow. Two major approaches for the numerical study of colloids

rheology are found in the literature: indirect and direct methods. The indirect methods
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are those in which the rheological behavior of the suspension is usually incorporated in
a single component model through the integration of some empirical formulae (Artoli,

2003; Ouared and Chopard, 2005; Chandran et al., 2006). The most famous of these is

the Cason’s \/u|y|=+/o - [o, which was used by Ouared and Chopard (2005) where
o is the shear stress, o  is yield stress, the power law o = y”, and the Bingham plastic
o=0o,+u,y,(Chandran et al., 2006) where y, is the Bingham viscosity coefficient.

The direct methods are based on rather measuring the pressure drop Apalong

the length of a channel and the flow rate Qin Poiseuille flow to deduce the apparent
(ApAL)”r4
80

viscosity by u,, = (Sun and Mann, 2005; Sun and Mann, 2006), or

measuring the shearing force per unit width Fin Couette flows as in Fig 2.4, and

HF

calculate the effective viscosity s, = (Liu and Liu, 2006), where His half the

0

channel width, L is the channel length and U, is the wall velocity.

Uy

Fig 2.4 lllustration of the domain for the simple shear flow used to calculate effective
viscosity Liu and Liu (2006).

c. Red blood cell deformability
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Red blood cell (RBC) deformability is the most important physical property to
study when analyzing blood flow inside the capillaries. Due to this extreme property
RBCs are capable of streaming through vessel with diameters half of their size. Factors
affecting RBCs deformability are many. These include some serious illnesses like
malaria, diabetes, atherosclerosis, and others. A list of some facts related to RBC
deformation mechanisms was extracted from the literature (Baskurt and Meisleman,
2003; Braasch, 1971; Gedde et al., 1995; Keller et al., 1998):

e In the microvasculature the velocity of the RBC is dependent on the level of its
rigidity and shape.

e Deformability of the RBC generally helps reduce the blood viscosity both in large
and small vessels.

e Severe shocks, burns, and some snake bites rigidify the RBC membrane.

e The deformability of the RBC is influenced by the surface area to volume ratio of
the cell. Therefore swelling of the RBC due to a reduction in the blood osmolarity
decreases its deformability.

e Shrinking of the RBC (Crenated cells) due to increase in the osmolarity of the
blood. This changes the internal cell fluid viscosity causing higher RBC rigidity.

e The availability of metabolic energy i.e. adenosine triphosphate, which is very
essential for the functioning of the cation pump in the RBC membrane. This pump
maintains all required active substance exchange like intercellular cation and water,
thereby maintaining the RBC surface area to volume ratio. This is also important for the

reduction of cytosolic calcium concentration, which excesses rigidify the RBC
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cytoskeleton. The lack of metabolic energy often happens in the events of glucose
shortage in the RBC microenvironment.

e Oxygen-free radicals associated with an ischemia-reperfusion injury generate
superoxide anions inside the RBC which decrease its deformability.

e Polymorph nuclear leukocytes are activated during injury or inflammation
resulting in increased level of secretory activities which cause reduced RBC
deformability.

Describing the RBC deformability, Baskurt and Meisleman (2003) claimed that
the alteration in the composition of the lipid bilayer had a minor role in the mechanical
behavior of the membrane, and that the cytoskeleton protein constituents had a major
role in this process. The cytoskeleton is believed to be susceptible to chemical reactions
which increase the cross-linkage among membrane skeletal proteins thereby reducing

the cell deformability.

Hydrophobic —_m

tails [ Plasmaz
C
& = Lipid bilayer
Hydrophilic
heads [
Hemoglohin

Fig. 2.5 Simplified representation of the blood cell as Liposome, justified by the
assumption that the membrane liquefies under pressure in the microvasculature.

The role of the lipid bilayer alteration was more appreciated (Gedde et al., 1995;

Braasch, 1971). Two possible mechanisms were explained by Gedde et al. (1995).
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e The perturbation of the distribution of the phosphatidylcholine in the outer leaflet
and the phosphatidylserine in the inner leaflet can cause a change in the membrane
curvature.

e The change in the electrostatic interactions of the lipid head groups has a major
influence on the membrane shape. Both mechanisms were tested by the titration of the
cell PH (logarithmic measure of hydrogen ion concentration).

Braasch (1971) explained the Norris surface tension hypothesis and the role of
surface active substances on the RBC shape and deformation. Braasch gave the
following evidence in support of this hypothesis:

e The sphering ability of surface active substances, like saponinc, free fatty acids,
bile, lycolecithin, and some snake venoms.

e Crenated cells are induced by anionic and non-ionized compounds, while cup-
shape cells are by cationic compounds. Chlorpromasine stretches biological
membranes.

¢ Incubation of RBC in plasma at 37 degrees causes sphering of the cell due to
esterification of the cholesterol in the plasma which was replaced by the cholesterol of
the RBCs.

e Sphering and crenation of the RBC occurrence after severe shocks which was
caused by the effects of adrenaline and catecholamine in the blood.

The influence of the lipid bilayer on the deformation of the RBC was further
supported by the results of the experiment Keller et al (1998), which indicated that the

RBC lipids formed immiscible fluid below pressures of 21 (dyne/cm) for the inner leaflet,
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and 29 (dyne/cm) for the outer leaflet. At higher pressures the lipids mixed together and

formed a homogeneous liquid.
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CHAPTER 3
OUTLINE OF THE PRESENT WORK

3.1Research objectives

The objectives of this work is to provide an efficient LBM based CFD model,
capable of solving complex problems related in general to liquid-liquid colloids, and in
particular to biological suspensions under specific conditions. This will be achieved
through the following steps:
a. Code development

e Enhance the efficiency of the multi-component LBM, through accelerating the
solution.

e Incorporate the surfactants effect on the interface of the immiscible fluids,
through the coupling of the surfactant convection-diffusion equation with the Boltzmann
equation.

e Impose suppression of coalescence, which allows the inclusion of the local inter-
particle interaction forces to provide a realistic tool for the study of colloids rheology.

b. Validation

e The developed code should undergo rigorous validation at each stage of its
development through comparison with other numerical, analytical and experimental
results.

c. Application

e The various modules will be used to investigate the colloids morphology and

rheology, and for the study of the RBC deformation, while streaming in the

microvasculature.
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3.2Dissertation organization

The concept of the migrating multi-block for accelerating the LBM solutions is
explained in Chapter 4. This will cover the single component, the Gunstensen multi-
component and the particle-interaction-potential LBM, respectively. The migrating multi-
block concept will be tested and validated in 2D and 3D geometries for a variety of flow
conditions such as vortex shedding, shear lift of a neutrally buoyant droplet, buoyancy
of bubbles, cavitations and settling droplets on a horizontal wall.

Chapter 5 presents a newly proposed Gunstensen based hybrid LBM-finite
difference model for the study of surfactant-covered droplets. The coupling of the model
is realized through the LBM velocity field and the surfactant equation of state. The
model is tested and validated by studying the effects of surfactants on the flow
deformation of a droplet in simple shear flow, uniaxial extensional flow and under
buoyancy.

Chapter 6 introduces a novel method for the suppression of coalescence in the
2D Gunstensen LBM and shows two test cases of the model. The importance of the
suppression of coalescence module is in providing a qualitative representation of the
inter-particle forces which act on the interfaces of the approaching droplets. This allows
the study of the rheology of colloids which results were validated by a comparison with
some analytical solutions.

Chapter 7 discusses the RBC deformation in the microvasculature. A heuristic
approach for simulating the RBC as surfactant-covered droplet is presented here to

assess the validity of the concept. The velocity and deformation of the droplet are
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studied as functions of the interfacial tension. The Fahraeus and the Fahraeus-Lindqvist
effects are simulated and analyzed.

Chapter 8 Presents a summary of the research findings, and suggests some

future recommendations.
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CHAPTER 4
ACCELERATED LATTICE BOLTZMANN METHOD

4.1 Migrating multi-block schemes for the D2Q9 LBM

The present work’s objective is to provide a simple algorithm, aiming at saving
considerable computational time in simulations where local grid refinement is required,
and especially applicable to multiphase and multi-component flows with highly
deformable interface. To avoid the difficulties faced by Tolke et al. (2006), and to
maintain a relatively simple approach using standard structured grid LBM, a
Gunstensen based model combined with the multi-block method of Yu et al. (2002), is
proposed here. The difference in the proposed model lies in that, a fine grid block
covers the entire fluid interface and migrates with it, so that the physical interface does
not cross the grid interface. This is performed by tracking the mass center or the
average velocity of the suspended fluid, which acts as a trigger to impose node type
exchange at the grid interfaces in a way that does not alter the physical properties of the
various fluids. The node type exchange occurs without time lag during the propagation
step in the coarse block. The grid interface is always imposed where a single phase
exists.
a. The migrating multi-block algorithms

Single component algorithm for 2D geometries

The following is a brief description of Yu et al. (2002) multi-block LBM tailored for
this work domain, in which the width is much smaller than the length. The domain
shown in Fig 4.1 consists of three blocks: an upstream coarse block, a fine block, and a

downstream coarse block.
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Transfer from fine grid to coarse grid

coarse block ° coarse block
Upper boundary nodes
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Lower boundary nodes
Stream

Upstream coarse block . Downstream coarse block
in fine block

O o)

Transfer from coarse grid to fine grid Grid interfa @
and interpolate spatially and temporally. Grid interface

Stream in upstream l Fine block Stream in downstream

Fig 4.1 lllustration of the standard multi-block LBM domain as it pertains to the single
component flow simulation of this work.

The ratio of the lattice spacing m between the fine and coarse blocks is defined
by Eq. (2.39). To maintain the same viscosity, and therefore the same Reynolds number
in the various blocks, the relaxation times have to satisfy Eq. (2.40). Each grid interface
consists of overlapping two sets of coarse and fine nodes with one additional set of fine

nodes filling in the gap as shown in Fig 4.1. The transfer of the post-collision distribution

functions £/ = f° between the different grids occurs before the streaming step. To
maintain the same lattice velocity (5;/5; :5,{/5,-") between the various grids, the time
step ratio is the same as the spatial ratio (m :5;/5{ :5f/5tf). After one collision step in

the coarse block a transfer of data(ﬁ.f <—fic) is required at the indicated locations in Fig

4.1 by Eq. (2.41). After m collision steps in the fine grid a transfer of data(fif —>fl.")is

required at the indicated locations in Fig 4.1 by Eq. (2.42). A symmetric cubic spline

interpolation is required for calculating f,.f on those fine nodes, which do not overlap with
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the coarse nodes at the grid interface. This is done by the following formula (Rorres and

Howard, 1984):

fj:f(x) :aj(x—xj)3 +bj(x—xj)2 +c,(x—x,)+d,

(4.1)
The coefficients in Eq. (4.1) are calculated as follows:
M,
4= Mgy
p M
T2 (4.2)
: : M. +2M,
e
6
d;= fjf

where M are second order derivatives of the function f,:f and h=x;-x, ,measured in
the coarse block. The M functions are calculated by solving a matrix equation, which

leads to a tridiagonal coefficients matrix suitable for the Thomas algorithm, and the

natural spline condition is stipulated where M =M, =0.

A three-point Lagrangian interpolation scheme is used to calculate the post
collision distribution function on the grid intersection by Eq. (2.43). This leads to the
following relation for the temporal interpolation with for example a spacing ratio m =4

and time measured in coarse steps:

F (1,005) =—0.09375 £ (1) +0.4375 £ (1) +0.65625 1 (t.,)
F(t,05)=—0.125F7(¢.)+0.75 £ (£)+0.375 £ (z,,) (4.3)
F (t,025) =—=0.09375 £/ () +0.9375 £ (1) +0.15625 1 (¢.,)

For simplicity a ratio m =2 was used throughout this work. This required the utilization
of only f/(z,,5)from Eq. (32) for the temporal interpolation.

Gunstensen multi-component algorithm for 2D geometries
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To implement the multi-block concept on the Gunstensen model care should be

taken of the collision step which involves the sum f/(x,7)of the two distribution

functions R (x,?)and B.(x,t) as it was expressed in Eq. (2.10) and Eq. (2.11). Therefore

the sum post-collision distribution function fl.f(x,t+5,)should be used in Eq. (2.41) and

Eq. (2.42) for the required transfers at the grid interfaces. Since the streaming step in

the Gunstensen model occurs with separate post-collision post-segregation distribution

functions Ii(x,t)and é.(x,t)), a transfer of the grid interface information from the sum

functionfl.f(x,t+5,) to the suspending component functionl:?i(x,t+5t)is necessary
before streaming. This is to ensure that the transfer of information at the interface

between the different grids is propagated through the function l:?i(x,t+5t) into the fine

block. This transfer is not required for the function Ii(x,t)since the physical interface in

the proposed model does not cross the grid interface contrary to the experiment of
Tolke et al. (2006), and the exchange of information from the various grids is done only
at the single phase interface nodes.

The migrating multi-block method’s main feature is the exchange of node type at
the grid interfaces. For the fluid-fluid interface to be constantly covered by a fine grid
while moving, an exchange of boundary coarse nodes with fine nodes downstream of
the fluid interface, and alternatively an exchange of fine boundary nodes with coarse
nodes upstream of the interface are needed as shown in Fig 4.2. The node type
exchange occurs when the distance travelled by the suspended fluid mass center
exceeds one coarse lattice spacing in the flow direction. This exchange happens during

one coarse time step and it starts with the streaming in the coarse block. Here a
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distinction should be drawn between the two coarse blocks. The propagation step

should start in the downstream coarse block first, because after propagation the coarse
distribution function f“‘(x,t)is set to zero at the location indicated as old diminishing

coarse nodes in Fig 4.2, thereby allowing only fine nodes to occupy it. This can be done

since the information needed for the propagation has already been passed.

Fine block before
migration

Upstream coarse block Downstream coarse block
before migration = »  before migration

Upper boundary nodes

——O-60-0-60-60-0- .e.-e--@o@-o-o-o-o-o-a-o-o-oé)n@ -O-O0-0-6-6-66---

000000000000000

OO0O00000 00 ©0s00000000@® O OOOOO0O

000000000 ©:0::Ml:2:6:0 0000000
000000000 ©:6: - @F:220:0 000000 O

Flow direction 0000000000000

OOOOOOOOO@°©°°°°°°°°°®°@OOOOOOO

000000000000000

___ie.’_e..e -O-0-0-0- 9—?&0—044444— -0--0--0--0-0O- ?-j—
Lower boundary nodes

Upstream coarse block Fine block after Downstream coarse block
after migration Migration after migration
Old diminishing fine node © Newly created fine node
Old diminishing coarse node O Newly created coarse node

Fig 4.2 lllustration of the migrating multi-block LBM domain as it pertains to the
multiphase flow simulation used in this paper.

To create two new sets of fine nodesl%(x,t) on the new grid interface

downstream of the suspended fluid, the extrapolation method is used at the location
indicated as newly created fine nodes in Fig 4.2. For spacing ratiom > 2, a careful
selection of the extrapolation scheme should be done in order to minimize any possible
numerical diffusion, since the extrapolation method could become less accurate.

Meanwhile, during the same coarse time step, at the grid interface the following

functions (f,.f(x,t) ,§i(x,t),pN(x,t)) are set to zero in the locations designated as old
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diminishing fine nodes in Fig 4.2. This will not influence the solution because the
information stored in these fine nodes is not required for any subsequent calculations.
The propagation in the fine block will not include the vanishing nodes, which position in

the domain is now occupied by only coarse nodes. Extrapolation is used again to create

a new set of coarse nodes f““(x,t) at the locations indicated as newly created coarse
nodes in Fig 4.2. This is followed by an immediate transfer of data from the fine node at
the new interface to obtain ff’”(x,t) needed for the propagation in the upstream coarse

block. The next step is propagating the upstream coarse block followed by the steps
provided in the flow chart of Fig 4.3 which resemble the steps of the standard multi-

block model.
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Fig 4.3 Flow chart for the migrating multi-block LBM for immiscible mixtures.
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b. Simulation results and discussions
Asymmetrically placed cylinder in 2D channel

To investigate the effects of the migrating block on the numerical solution, an
unsteady flow around an asymmetrically placed cylinder in 2D channel was simulated
using fixed and migrating multi-block schemes simultaneously. The results were
compared with some benchmark cases presented by Schaffer and Turek (1996).

The center of the cylinder was located at 4.0 radii from the lower wall, 4.2 radii
from the upper wall and 4.0 radii from the inlet as shown in Fig 4.4. The fine block
covered the whole cylinder, and it was 80 by 164 lattice squares. The total number of
nodes in both coarse blocks was 32,800. The ratio between the coarse and the fine

grids wasm =2 . The relaxation times for the fine and the coarse grids were 7, =0.58
andr, =0.54, respectively. The average velocity used for the calculation of the Reynolds
number was:

U==U (4.4)

H
0,—,¢
( B )

w | N

where H#is the channel height, ¢is time, and Uis the centerline velocity. The average
velocity used for this simulation was U = 0.0666 lattice units per time step, resulting in a
Reynolds numberRe=100. The extrapolation method was enforced on the outlet
boundary, and the bounce back condition was implemented on the top and bottom walls
as well as on the cylinder surface. The method of Zou and He (1997) was applied on
the inlet of the domain using a parabolic velocity profile which was calculated by the

following formula (Schaffer and Turek, 1996):
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Fig 4.4 Migrating multi-block LBM domain for the flow around an asymmetrically placed
cylinder in a channel, with the cylinder center location expressed as a function of its
radius.

Under these conditions an unsteady flow was developed and a periodic vortex

shedding was witnessed. Instantaneous streamlines for the fixed block simulation are
- . Df . .
shown in Fig 4.5 (a). The Strouhal number defined as Stzﬁwhere Dis the cylinder

diameter, f'is the frequency of separation (the inverse of the period from peak to peak
values of the lift coefficient) was St =0.293. This value matched well with the results
given by Schafer and Turek (1996). The same simulation was carried out again with the
fine block migrating by one coarse lattice each 5x10°coarse time steps. The Strouhal
number was calculated asSt=0.297. This value agreed well with those given by
Schafer and Turek (1996)(0.295£St£0.305). A qualitative comparison between the

instantaneous streamlines of Fig 4.5 (b), with the streamlines of Fig 4.5 (a), shows a

very marginal difference caused by the moving fine block after five consecutive shifts.
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200
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Fig 4.5 Instantaneous streamlines of a 2D channel flow over an asymmetrically placed
cylinder withRe =100 time step2.9x10* measured in coarse time units. (a) fixed multi-
block in which the fine block is static having a center coinciding with the cylinder center
(b) migrating multi-block in which the fine block migrated in the direction of the flow by

one coarse space unit each5.0x10’ coarse time steps and having its center advanced
by 10 fine space units in the flow direction with respect to the cylinder center.

The Strouhal numbers in both simulations were derived using the lift coefficients
graph of Fig 4.6, which was plotted together with the drag coefficients between coarse
time steps 3.7x10*and4.0x10*. The lift and the drag coefficients were calculated using

the following formulae, respectively (Schaffer and Turek, 1996):

2F,
L™ 572
pU"D
2F (4.6)
D
P pUD

The lift and the drag forces were computed by the following equations, respectively:
F =—j( Py 4+ Pn )dS
L S ILl 8}1 X y

(4.7)
t
FD = .[S(ﬂany —an)dS
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where F, was the lift force, F,the drag force, » was the fluid dynamic viscosity, P was
the local pressure, v, was the tangential velocity, and »_,n, were the xand , components

of the normal to the surface of the cylinder S'.
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Fig 4.6 Lift and drag coefficients for fixed and migrating multi-block cases, calculated for
results taken between coarse time steps 3.7x10*and4.0x10*. A comparison of the two
cases indicates that the block migration altered the results just marginally.

The comparison in Fig 4.6 shows a reasonable agreement between the two

cases and the lift coefficients were not symmetrical with respect to the x axis. This was
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due to the asymmetrical placement of the cylinder (Yu et al., 2002). The maximum
absolute values for the lift coefficient, which was in the negative region, were different in
both simulations (0.98 for the fixed block, and 1.03 for the moving block); However both
maximum values agreed well with the values given by Schafer and Turek (1996) (0.99

to 1.01). The drag coefficients were 3.03<C,<3.14 for the fixed block and
3.02<C,, £3.138 for the migrating block. Both maximum values were little below those

reported by Schafer and Turek (1996) (C

D,max

=3.22-3.24). Figure 4.7 shows the

vertical velocity contour and the fine block position after the seventh block shift at

coarse time step3.6x10*.

200

00 200 400 600 800

Fig 4.7 Vertical velocity contours, and location of the fine block with respect to the
cylinder at coarse time step3.6x10".

To test the quality of the data transfer through the grid interfaces and the effects
of the fine block migration on the model results, the mass flux and the momentum flux
were calculated at the grid interface downstream of the cylinder as shown in Fig 4.8.
The data were collected from the overlapping coarse and fine nodes of the migrating
block at the grid interface, and from the fixed multi-block nodes which occupied the

same spatial locations. The good match between the results of the fine and the coarse
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block calculations at the migrating block interface was a measure of the used

interpolation scheme’s accuracy, and it showed that the migrating block algorithm did

not alter the outcome of the calculations. The slight difference in the y components

between the migrating and the fixed block results was due to the difference in the grid

size, used for calculating the fluxes in both cases, and also due to the fact that the

nodes where the data collection occurred in the fixed multi-block were not grid

intersection nodes.
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Fig 4.8 (a) Graphs for the dimensionless mass flux at coarse time step3.5x10°,
calculated for checking the quality of the data transfer through the grid interface
between the fine bock and the downstream coarse block in the migrating multi-block
model. Comparison between the results of the moving fine grid interface’s nodes with
those collected from the fixed multi-block coarse nodes which occupy the same
locations. M and F in the figure stand for moving and fixed blocks, respectively.
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Fig 4.8 (b) Graphs for the dimensionless momentum flux at coarse time step3.5x10*,
calculated for checking the quality of the data transfer through the grid interface
between the fine bock and the downstream coarse block in the migrating multi-block
model. Comparison between the results of the moving fine grid interface’s nodes with
those collected from the fixed multi-block coarse nodes which occupy the same
locations. M and F in the figure stand for moving and fixed blocks, respectively.

Lift of a neutrally buoyant drop in parabolic flow

The study of multiphase flows at low to moderate Reynolds and Weber numbers,
where the effect of gravity is neglected, is of interest in many applications such as the
study of drop suspension in microgravity, and in the study of microfluidics. In very low
gravity shear and parabolic flows, the hydrodynamic lift force becomes very important,
since it is no longer overshadowed by the buoyancy. The lift force is due to the

hydrodynamic interaction of the drop with neighboring boundary (Halliday et al., 2005)
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or it is caused by a secondary velocity field at the drop surface (Legendre and
Magnaudet, 1998).

The goal of this section’s simulation was to validate the proposed model by
comparing the results for the lateral migration of a 2D neutrally buoyant drop placed
near a wall in parabolic flow with other numerical work. The other goal was to assess
the quality of the proposed migrating multi-block model results for the lift trajectory and
velocity, in comparison with those from the standard Gunstensen model. The approach
for the estimation of the shear lift velocity was based on tracking the mass center of the
drop. The result was a displacement-time function used for the calculation of the drop
lateral velocity. The quality of the measurements depended heavily on the nature of the
grid, since the lift force was small likewise the change in the lateral position of the drop
mass center. To minimize the effect of periodicity in the flow direction while attaining the
drop equilibrium distance from the wall, a longer channel was required. For a better
interface representation it was crucial to refine the grid surrounding the drop. All of this
resulted in a high computational cost for the standard LBM meanwhile it provided a
good test ground for the proposed migrating multi-block method.

Mortazavi and Tryggvason (2000) carried out a thorough numerical investigation

of the drop shear lift in Poiseuille flow. For the case in which the ratio of the drop radius

to the channel height was given as{ =0.125, the viscosity rationzﬂzg, the drop

Reynolds number Re, =10.0and the Weber numberiwe =16, a normalized equilibrium

distance from the wall of );{—" ~ 0.30 was reported.
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The drop behavior in parabolic flows is characterized by the following
dimensionless numbers. The channel Reynolds number:

Re, =1 (4.8)
14

where H is the channel height, Uis the flow average velocity.

The drop Reynolds number is given by:
Re, =— (4.9)

The Weber number is expressed as follows:

pU*d
a

We =

(4.10)

A domain made of 287,400 coarse lattice nodes and 168 by 300 fine lattice

nodes, covered a drop with diameter d=76 fine lattice units, yielding a ratio
¢ =d/2H ~0.125. The drop was placed at coordinate (94, 245) measured in fine lattice
nodes, the density of both fluids was set to p =0.514 and the surface tension parameter
toa =1.0x10"*. The relaxation times for the ambient fluid in the fine and coarse grids
were set to 7, =0.646 andz,=0.573, respectively. The drop relaxation time was
7, =1.666 leading to a viscosity ration =8. The grid ratio between the coarse and fine

blocks wasm =2. A constant force |F|:2.14><10’8 was used in Eq. (2.20) to induce a

flow with an average velocity U = 0.0064 , a drop Reynolds number Re, =10.0 and Weber

numberWe ~16. The bounce back condition was applied on the upper and the lower

walls, and the periodic condition was imposed at the inlet and the outlet boundaries. In
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the migrating multi-block the following equalities were required in the upstream coarse

block after streaming:

S s 5D = 5 (X 251
fltc*“ ('xﬁrst’y’ 2) = f;C’d (xlasl’y’ 2) (41 1 )
J G 58) = £ (X5 3,8)

where f““and £’ are the distribution functions in the upstream and downstream blocks,
respectively. x, andx,, refer to the first and the last fluid nodes in the horizontal

direction, the numbers indicate the lattice directions. In the downstream coarse block

the following was applied:

f;Qd (xlast s y9 4) = f;’c’u (xﬁ”t ’ y’ 4)
j{ic’d (xlast’yas) =fi0,ll (xﬁrstoy’ 5) (412)
S s 16) = 7 (X03.6)

The source term of Eq. (2.20) was augmented by the grid ratio m in the coarse blocks

as follows:
h=07"F (4.13)
2

The drop center of gravity normalized position with respect to the drop axial
normalized position is shown in Fig 4.9. The migrating multi-block result was compared

with the solution of Murtazavi and Tryggvason (2000). The normalized equilibrium
distance resulting from the migrating multi-block WaS%zO.?)l. The proposed model

results were fairly good, in comparison with those of Murtazavi and Tryggvason (2000).
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Fig 4.9 Drop mass center normalized lateral displacement by the migrating multi-block
LBM compared with the solution of Murtazavi and Tryggvason (2000) for the case with

Re, =10.0,We=16,4=8and ¢ =0.125. No further data was provided for x/H >13.3
since the drop reached the end of the domain (4000><300) in the MMB model measured

in fine lattice. The inset in the figure is for the phase field contours of the droplet with
superimposed snap shot from different time steps.

To compare the results of the proposed model with those of the standard LBM,
the same flow condition and geometric settings were used for a domain consisting of
2,000 by 300 lattice squares to avoid excessive computations in the standard LBM. The
equivalent domain for the migrating block scheme consisted of 137,400 coarse lattice
nodes and 168 by 300 fine lattice nodes. The drop was placed at coordinate (94, 248)

measured in fine lattice nodes.
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A dimensionless approach was used for the analysis of the results. H was

-~ 3= , : .
selected as a characteristic length, U, ZEU the undisturbed centerline flow velocity, as

characteristic velocity, and the inverse shearing strain rate 7' = as characteristic

0
time. The shear rate was calculated at the vertical position 3H/4 since this position was
representative of the equilibrium point in the drop lift activity space. The normalized fluid

average velocities and the normalized displacements of the drop mass center in the

flow direction versus dimensionless time from the two simulations are shown in Fig

4.10.
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Fig 4.10 Normalized fluid average horizontal velocities (a), and normalized drop mass
center displacements in the flow direction (b), for both the migrating block and the
standard Gunstensen model versus dimensionless time.

The lateral displacements normalized by the channel width, versus the
dimensionless time from both simulations are shown in Fig 4.11.The lift velocities were

calculated from the lift displacement-time data as time derivative by a finite difference
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scheme with second order accuracy, then were normalized by the centerline flow

velocity as shown in Fig 4.11.
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Fig 4.11 Normalized lateral trajectory of the drop mass center (a) for the migrating block
and the standard LBM measured with respect to dimensionless time. Normalized lift
velocity (b) for the migrating block and the standard LBM calculated with respect to the
dimensionless time.

It was clear from Fig 4.11 that the velocities observed at #y<7 should be
neglected due to the drop tilt during the initialization of the simulations, and that the
drop’s lift velocity is an order of magnitude smaller than its translational velocity. The
same was extracted in the work of Sukumaran and Siefert (2001) who studied the lift of
the near-wall neutrally buoyant vesicles in shear flow. The distance from the top wall at

dimensionless time step fy=28.8 for the standard LBM was%=0.2733 versus

% =0.2728 for the migrating block.

(a—Db)
(a+b)

The deformation index DI =

, Where « is the drop major axis and b is the drop

minor axis, varied between the values 0< DI <0.12 during the simulations as shown in
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Fig 4.12. The reduction in the DI associated with time was due to the reduction in the
viscous stress, when the drop drifted away from the wall leading to a reduced DI. Cox
(1969) proposed a theoretical formula for the calculation of the drop deformation in a
general time-dependent fluid flow with a range of capillary numbers and viscosity ratios.
The time dependence of the DI was through a decaying exponential function which led
after long time (steady state) to the following relationship:

i - 5(192+16) (4.14)

4(/1+1)\/(é°j2 +(192)’

a

where Ca = 11,yd [2ais the capillary number. The strain rate used in the calculation of

this work’s capillary number was locally defined by;}(y):‘i_leo (%—y}‘ The
deformation index calculated by Eq. (43) yielded DI =0.151 for the dimensionless time

step yt=12.8 and the calculated capillary numberCa =0.78. The dimensionless mass

center location was%: 0.824, which corresponded to the location where the simulation

results led to the highest value DI =0.12 as shown in Fig.12. The difference between
the measured and the calculated deformation indices could be resulting from the
transient nature of the drop deformation under the shear lift as measured from the

simulation, compared to the steady state deformation described by Eq. (43).

www.manaraa.com



52

Deformation index
0.14
0.12 ,ﬂ‘
01 y \\
_, 008 / %
a # Q’
0.04 / s
7] = ==-LBM
0.02 / ....... MMB
]
1] 10 20 30 10
Ly

Fig 4.12 Deformation indexes of the drops from both the standard LBM and the
migrating multi-block calculated with respect to the dimensionless time.

Figure 4.13 presents the phase field contours, with the various positions of the

drop generated by super-imposing consecutive snap shots taken at different time steps.

i B ENE

0 500 1000 1500 2000
(2)

0 500 1000 1500 2000
(b)

Fig 4.13 Phase field contour for five consecutive snap shots taken at different time
steps and superimposed in the figure. The blue blocks are fine, and the green blocks
are coarse: (a) migrating multi-block and (b) standard LBM.
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To analyze the computational time advantage of the proposed model the
following formula was introduced:

NN,

Ga=m

1 (4.15)
mLN,+— (N, ~L)N,
m

where N and N are the domain length and width measured in fine grids spacing

respectively, and L_is the length of the fine block. Equation (4.15) was based on the
idea that for the calculation of one time step in the coarse blocks expressed in fine

lattice units as(V, —Lx)Ny/mz, there is a need for m time steps in the fine block having
dimensions L N and in the standard LBM with dimensions N N , respectively. Equation

(4.15) is applicable only for 2D models, with the fine block covering the entire width. For
the current simulation the formula leads to a time gainGa=5.04 . This was also
confirmed by comparing the computational time required for the simulations using the
standard Gunstensen model and the proposed migrating multi-block method
simultaneously. Using DELL Precision 490 workstation, one time step in the standard

model required 0.516 second for execution, while the time needed for the same time

step in the migrating multi-block was 0.108second leading t0Ga =2 =477. The
t

mmb

difference between the calculated and the measured computational time gain could be
used to evaluate the code level of efficiency.
4.2 Migrating multi-block scheme for the D3Q19 LBM

It is always desired to simulate fluid problems in 3D geometries, because they

provide a better representation of the underlying physics. However 3D simulations
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are computationally costly. This prompted the extension of the migrating multi-block
to 3D geometries.
a. Modified model with density contrast
The standard Gunstensen model does not tolerate a density contrast between
the constituent fluids of the mixture meanwhile in this section the density contrast is
required for the simulation of a rising bubble in infinite medium. Therefore the method of
Grunau et al. (1993) is used with some suitable modifications for this purpose. The main
collision step is described by two distribution functions instead of the standard

Gunstensen color blind function f,(x,¢), and it is expressed through the following:
- 1
f/‘(x,t+5,)=J?"(x,t)—?[ﬁ"(x,t)—ﬁk’eq(p,pu)]+¢é(x) (4.16)

where fi" refers to post-collision distribution functions for the lighter and heavier fluids
(k=L,H), 7" are the relaxation times for both fluids, and ¢,(x) is a source term used for

the introduction of a force into the fluid, which could be utilized to induce the necessary
surface tension and to account for the difference in density between the various fluids,
thus creating buoyancy force. The surface tension is created by the method of Lishchuk
et al. (2003) which imposes a normal force at the interface by Eq. (2.16). The choice of
the equilibrium distribution functions is in principle arbitrary provided that these functions

satisfy the following mass and momentum conservation laws:
o) 0-

Pl(xst):ZfiL :Z]riL,eq

i=0
0-1 0-1
pl(x0)=) f = f" (4.17)
i=0 i=0
pu= Zcifik = Zcifik’eq
ik ik
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where p = p* + p' is the total density, p" is density of the light fluid, p"” is the density of

the heavier fluid. The following equilibrium distribution functions are used in the
proposed model and they were taken from the work of Maini (2007) due to the simplicity

of their derivation and application:

3 9 3
Leq o[l+—c.u+—:;(c.u P~ uu
[ = pr ol e ut—(eu)” ~——uu]

3 5 3 (4.18)
S = p ol += ¢, u+—(c,u)’ ——— uu]
c 2c 2c
where the constant is calculated as follows:
3-2y,—>i=0
= _ (4.19)
y,—>i#0
y = r_ Q is the dimensionless parameter for the density ratio. ¢’,c/ are the speeds
P’ (e

of sound used in conjunction with z* for determining the kinematic viscosities of the two
fluids. This is realized through the use of Eq. (2.5). The relationship between the source

term ¢.(x) and a constant macroscopic force F(x)such as a body force is expressed by
Eq. (2.20). The ratio between the various fluids weighting constants is expressed

through the following relationship )’ = @y (3—2y); @, =y, -

In the proposed model, the post-collision distribution functions are calculated by
Eq. (4.16) for each fluid using a sweep throughout the whole domain. This will not alter
by any means the light and heavy fluid mix at the interface and it allows the use of the
appropriate equilibrium distribution function, based on the right proportion of masses

present at the individual interfacial nodes from both fluids. The total color blind post-

collision distribution function is hence after invoked usingﬁ :ﬁL +ﬁ”. This paves the
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way for the segregation process which is achieved by not allowing color diffusion at the
fluid interfacial nodes. The formulaic method of D’Ortona et al. (19995) is applied in the
model using Halliday et al. (2007) generalized formula for the implementation of the

method in 3D models:

L

—_ L H
ff<x,r+a;>:p L F(xt+8)+ L

L+pH

oVp" ¢,
ph+p" (4.20)

St +8) = [(x,0+8)— [F(x,1+8)

pis the segregation parameter. j:“f” refer to post-collision post-segregation
distribution functions of the light (red) and heavy (blue) fluids respectively. The

streaming step follows the segregation step through the following:

148)= [H(x,0+8)
fl(x+¢6,t+68)= [ (x,t+6)

S xxed (4.21)
b. The migrating multi-block algorithm

A 3D domain shown in Fig 4.14 describes three blocks in which the central is
cast with fine grid and the others are with coarse grid. The spatial and temporal ratio of
the lattice spacing for both fine and coarse grid m is defined by Eq. (2.39).
The relaxation times are linked through Eq. (2.40) which guarantees uniform viscosity
throughout the fluid in all blocks (Yu and Shyy, 2002). Each grid interface is formed by
two sets of overlapping planes of coarse and fine nodes (A, C & B, D) and one

additional plane of fine nodes in between for each interface (not shown in Fig 4.14).
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Fig 4.14 lllustration of the 3D multi-block lattice Boltzmann method domain comprising
of two coarse blocks and one fine block.

The transfer of information between the various grids is executed on all interfacial
planes by the same formulae which were implemented in the 2D model and were
extracted from the work of Yu and Shyy, (2002). At the fine plane (A & B) Eq. (2.41) is

used for the transfer. At the coarse plane (C & D) the transfer is executed by Eq. (2.42).
Symmetric cubic spline interpolation is needed for calculating f,.f on those fine

nodes designated with asterisks and red circles in Fig 4.15 by Eq. (4.1) and Eq. (4.2).
Spatial and temporal interpolations are only needed at planes (A & B) illustrated in Fig
4.15. A constructive suggestion on the sequence used for the spatial interpolation is to
start first by calculating the values of the post-collision distribution functions at the

asterisks positions following the y direction through a sweep by x coarse spatial steps.
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This is followed by the calculation of the post-collision distribution functions at the red

circles in the x direction through a sweep by y fine spatial steps.

A

x FA

Intcrpolatc using 7 with coarsc x steps
v ® Interpolatemsing x with fine y steps

Fig 4.15 lllustration of the grid interface plane at the beginning or the end of the fine
block, where spatial and temporal interpolation are required.

A three-point Lagrangian temporal interpolation is required for all fine nodes
shown in Fig 4.15 in order to synchronize the solution and it is executed by Eq. (2.43).

The migrating multi-block algorithm is based on the idea of exchanging nodes
type at the grid interfaces. This is driven by the necessity of covering the fluid interface
with fine grid throughout the simulation time. The condition for the occurrence of the
node type exchange is implied by the displacement of the interface in the flow direction
by a value greater than one coarse unit. The exchange requires the creation of two
planes of fine nodes and the extinction of one plane of coarse node in the downstream
block, and the creation of one plane of coarse nodes and diminishing two planes of fine
nodes in the upstream block. The creation of new nodes requires the use of

extrapolation method which could be of first or second order. The aim is to minimize
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numerical diffusion, which is usually marginal, since the newly created nodes undergo
information transfer by Eq. (2.41) and Eq. (2.42), before proceeding with any further
calculation.
c. Simulation results and discussion

The velocity and the shape of a light bubble moving in a denser fluid is strongly
dependent on the ratio among three forces -- the driving force from buoyancy, the
resistance from the viscous friction, and the surface tension which tries to maintain the
shape of the bubble spherical. For the simulation of a free rising bubble in infinite
medium with periodic boundary condition the effects from the noted forces can be

represented by the following dimensionless parameters (Tolke et al., 2002):

Apd” ‘A U,dp"
£, =520 M, = ELP Re==1L (4.22)
O (p") o H
Here gis the acceleration due to gravity, d is the bubble diameter, p” is the density of
the heavy fluid and o,is the surface tension at the interface. The Eotvos number E is

the ratio between buoyancy and the surface tension, the Morton number M, compares

the inertial effects, viscous drag and the surface tension, the Reynolds number Re
represents the ratio between the inertial force and the viscous drag. The interplay
between these parameters determines the shape of the bubble which could vary from
spherical, ellipsoidal, ellipsoidal cap, spherical cap and eventually to skirted as this was
demonstrated through the experimental work of Bhaga and Weber (1981).

Terminal velocity

www.manaraa.com



60

The terminal velocity of a rising bubble in infinite medium with E >40and
M, >200 can be estimated analytically through solving the following equation with

respect to the Reynolds number (Clift et al. 2005):

2Re’+ 6Re21+ﬂ—Ej/2M0”2 =0 (4.23)
+77

where 77 =y, / 1, is the viscosity ratio for the light and heavier fluids.

The demonstration of the proposed method is performed as follows: The
simulation domain was 61x61x351 measured in fine lattice units, and the bubble initial
radius was d =12 lattice fine units as shown in Fig 4.16.

Periodic condition was imposed in all directions. The fine block consisted of
61x61x48 lattice cubes yielding 178,608 fine nodes; meanwhile the upstream and the
downstream blocks comprised of 140,933 coarse nodes. The spacing ratio wasm =2,

the relaxation times were ¢, =0.9andz,=0.7 for the fine and coarse blocks

respectively, and the segregation parameter was 8 =0.55. A density p”’ =2, density
ratio y = 0.5 leading to a density contrasty ' =2.0, kinematic viscosity ration =1, dynamic
viscosity ¢ =0.266and a surface tension a =0.001were used in five cases where the

gravitational acceleration g was varied consecutively.
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Fig 4.16 3D simulation of a rising bubble in an infinite medium with A/, =821, E, =374

andRe =8.10, velocity contour in the z direction for superimposed snap shots at three
different time steps (left)) 3D phase field contours where the fine migrating
superimposed blocks are shown in blue and the coarse blocks in green (center), 2D cut
of the density contour depicting the droplet profile during the various time steps (right).

The values for the accelerationgfrom five different cases and their

corresponding Eotvos, Morton, Reynolds numbers and theoretical terminal velocities

are presented in Table 4.1.
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Table 4.1 Simulation results for five different cases, U, terminal velocity from Eq. (4.23),
U,, terminal velocity from the numerical simulation.

g Ey M, Re Up Unm
000036 207 455 542 00301 0.0304
0.00045 259 568 6.33 00351 0.0359
000054 311 682 7.16 0.0397 00401
000065 374 821 8.10 0.0450 0.0444
0.00078 449 985 9125 0.0506 0.0489

A comparison between the terminal velocities calculated by the semi-analytical

Eq. (4.23) and the model terminal velocities for the various cases is shown in Fig 4.17.
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Fig 4.17 Terminal velocity comparison and shape change with respect to the Eotvos
number for values stated in Table 4.1.
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The figure also shows the effects of the change in the dimensionless parameters
of Eq. (4.22) and in particular the Eotvos number due to the change in the gravitational
force on the steady state shape of the rising bubble.

Bubble shape
Grace (1973) brought together the results of several experiments which focused

on the case of a single rising bubble in infinite media.

Mo
Morton

| mmber
Spherical-cap

3
Tegion cO
W
10'1!
ho™""
o™

LU LU I Il”lll[ L] ITTTTI[ T 1 TTTT] TTTIN
I

S

Fig 4.18 Shape regime map by Grace 1973 used for locating the proposed model
results for the various cases presented in Table 4.2. The model shows good fit within
the three shape map regions.
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Grace delineated three major regions where the shape of the bubble was
determined by the dimensionless parameters of Eq. (4.22). The regions were as follows:
spherical bubble, ellipsoidal bubble, and spherical cap regions. The various regions
were demarcated in a shape regime map shown in Fig 4.18. This map was further
expanded by Bhaga and Weber (2002) and more distinct regions were added which
included oblate ellipsoidal, oblate ellipsoidal cap, and skirted bubble shapes.

Data from six simulations are presented in Table 4.2. The shapes obtained by
the proposed model for the parameters of Table 4.2 were plotted with their
corresponding location in the three map regions. The results as seen from Fig 4.18
indicate that the model yielded droplet shapes which matched well the experimental

observation at the various regions of Grace’s shape regime map.

Table 4.2 Variables and dimensionless numbers for a few shape region simulations

g E, M, Re i Region
0.00005 29 63 0.63 0.2666 SBR -1
0.00036 207 455 542 0.2666 SCR -2

0.0015 864 1894 11.70 0.2666 SCR -3
0.00036 207 0.73 33.32 0.0533 SCR -4
0.00005 29 0.10 12.60 0.0533 EBR -5

(SBR) Spherical bubble region; (SCR) Spherical cap region; (EBR) Ellipsoidal bubble region

Density ratio
Although the proposed algorithm deviated slightly from the original Gunstensen

model in order to tolerate a density contrast among the constituent fluids, the highest

density contrast which was achieved in the present work did not exceed a value y ' =10.
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The main concern emanated from the formation of a thick interface in the phase field
presentation of the suspended phase. A density ratioy =0.1, segregation parameter
£ =0.15and a gravitational constant g =8.5x10~were used in a simulation, in which the

domain and all other fluid properties were similar to those used in the terminal velocity

section. This led toRe=4.2, M =193.23 andE, =88.13. The outcome of the analytical

formula for the terminal velocity differed from the simulation result since the formula was

not applicable for M <200, however the bubble shape and despite of the thick

interface still fitted well Grace’s shape regime map and it fell in the spherical cap region.
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Fig 4.19 Vertical velocity contour (left), phase field contour (center), and density contour
(right) for a rising bubble with a density contrasty ™ =10, M, =193, E, =88and Re=4.2.
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Figure 4.19 shows the vertical velocity, the phase field and the density contours
of a rising bubble with a density contrasty™ =10.

Multiple bubbles
To illustrate the migrating multi-block capability of dealing with multiple bubbles
seeded in the fine block, a two trailing bubbles case was studied. The two bubbles were
initialized in the same domain described by the fifth case from Table 4.1, with the
bubbles mass centers lying on the domain central vertical axis and separated by a
distance of 2d . The fine block was made of 61x61x84 fine lattice units, to accommodate

for the two bubbles.
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Fig 4.20 Vertical velocity contour (Left), phase field contour (center), and density
contour (right) for two trailing bubbles with a density contrasty™ =2,M =985, and

E,=449.
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The upper bubble moved in a quiescent liquid while the lower bubble followed
into a low-drag region resulting from the wake caused by the upper bubble. Therefore
the two bubbles had different deformation characteristics, and a non-zero relative
velocity diminished the separating distance between them, which eventually led to their
collision and coalescence. Figure 4.20 shows the vertical velocity contour of the trailing
bubbles which indicates a higher velocity of the lower bubble in comparison with the
velocity of the upper bubble. Fig 4.20 shows also the phase field contour and the

density contour of the trailing bubbles.
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Fig 4.21 Phase field contours of two trailing bubbles taken at different time steps and
superimposed in the same frame (left), graph for the changing dimensionless distance
between the trailing bubbles with respect to time (center), 3 D phase field contours and
their respective 2D cut views of selective snap shots intended to show various events
such as trailing, collision and coalescence of the two bubbles (left).
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The snap shots in Fig 4.21 for the phase field contours taken at different time
steps suggest that the coalescence of the two bubbles did not occur instantaneously
and that some liquid was trapped inside the newly formed bubble due to the high inertia
impact and to the lack of enough time for the liquid to squeeze out of the bubble. This
was also observed by Gupta and Kumar (2008). The liquid eventually drained off the
bubble, hence allowing it to attain its steady size which was double the original size of
the seeded droplets. Figure 4.21 shows the change in the dimensionless distance
measured between the tops of the lower and the upper bubbles. The graph in Fig 4.21
agreed qualitatively with the results of Takada et al (2001). This simulation suggests
that the proposed model is capable of handling multiple bubbles clustered in the fine
blocks, however it is unsuitable for solving problems with bubbles scattered randomly
inside the whole domain.

Grid interface data transfer integrity test

The accuracy of the proposed scheme depends heavily on the quality of the data
transfer required at the various grid interfaces. This transfer is directly influenced by the
schemes used for both the spatial and the temporal interpolation. The test of the data
transfer is also relevant for investigating the effects of the moving fine block on the total
outcome of the problem. A good scheme should perform well at the grid interface of the
downstream block and after numerous time steps.

The fifth case from Table 4.1 was again used for the investigation of the

smoothness of the data transfer at the location indicated as (plane B) in Fig 4.14 and at

9000 coarse time steps. The dimensionless mass flux '07 and the dimensionless

p"U,
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2
momentum flux p%HUz in the vertical direction were calculated locally using the data
T

stored at the gird interface coarse nodes, the overlapping fine nodes and at all the fine
nodes respectively. Figure 4.22 shows a qualitative comparison between the three
readings for the dimensionless mass flux, while Fig 4.23 represents a comparison

between the results of the dimensionless momentum flux.

Dimensionless mass flux in z direction

it LR BTSN
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2 & 20, s : =
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Fig 4.22 Dimensionless mass flux measured at the upstream grid interface (plane B in
Fig 4.14) for case five from Table 4.1 at 9000 coarse time steps, data collected from the
coarse nodes (top left), data collected from the overlapping fine nodes (top right), and
data collected from all the fine nodes (bottom).

Both figures show good qualitative agreement which indicates that the migration

of the fine block did not alter the quality of the data transfer at the grid interfaces.
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Dimensionless momentum flux in z direction
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Fig 4.23 Dimensionless momentum flux measured at the upstream grid interface (plane
B in Fig 4.14) for case five from Table 4.1 at 9000 coarse time steps; data collected
from the coarse nodes (top left), data collected from the overlapping fine nodes (top
right), and data collected from all the fine nodes (bottom).

For a quantitative comparison the following composite Simpson’s rule was used
to calculate both fluxes (Rostam and Mahdi, 2009):

(n/2)-1 (n/2)

IJDf(x,y)dXdy2%{]((360,)/0)"'2 Z f(x2i’y0)+4z f(x2i—l’y0)+f(xn’y0)

[ (m/2)-1 (m/2)-1(n/2)-1 (m/2)-1(n/2) (m/2)-1
+2 z f(‘x0>y2j)+2 Z Z f(xzzayzj)+4 Z Zf(XZi—l’ij)+ Z f(xn’y2j>
- mon . " " (4.24)
(m/2) (m/2) (n/2)-1 (m/2) (n/2) (m/2)
+4 1 f(xoﬁij—l)J'_z e f(x2i’y2j—1)+4 Zlf(XZil’ijl)+ 1 f(xn’ijfl)
J= j=l = =l = J=

(n/2)-1 (n/2)
+f(x0’ym)+2 z f(xZ[’ym)+4Zf(x2[l’ym)+f(xn’ym)}

i=1 i=1
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where h=k=2 lattice units, and m=n=30 for the coarse and the overlapping fine

nodes calculations, and % =k =1lattice unit, and m =n =60 for the fine nodes calculation.
The results presented in Table 4.3 show a good match between the various

calculations, thus indicating that the interpolation schemes used in the proposed model

had delivered the expected task, and that the smoothness of the data transfer was

acceptable.

Table 4.3 Comparison of the calculated mass flux and momentum flux for the fifth case

from Table 4.1 at 9000 coarse time steps, with data collected from the various grid
nodes which constitute the upstream grid interface.

Nodes type Mass flux Momentum flux
[mu/ts] [mu_lu/ts?)
Coarse -2.76074 0.04734
Overlapping fine -251919 0.04569
All fine -2.60329 0.04548

[mm ] lattice mass unit, [lu] lattice space unit , [ts] time step

Computational time advantage
To analyze the computational time advantage of the proposed model, the third
case from Table 4.1 was repeated using the approach for density contrast proposed in
section 2.1. The grid spacing for the entire domain was similar to the spacing used for
the fine block in the previous runs. The ratio between the computational times required

for both cases wasGa =t /¢, , =4.92. The phase field contours, and the bubble vertical

displacement versus time steps from the two runs are shown in Fig 4.24.
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Bubble vertical displacement
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Fig 4.24 Phase field contours and bubble vertical displacement versus time steps
comparison between the migrating multi-block simulation and the standard model with
M,=682,E,=311,and Re=7.1.

The following formula is proposed for the estimation of the time saving resulting
from the migrating multi-block model:

N.N,N,

Ga = (4.24)

1
LNN,+— (N =L)N,N,

where N, N and N_are the domain length and width and height expressed in fine grids

spacing respectively, and L_is the height of the fine block. The formula is applicable

only for 3D models, with the fine block covering the entire width and length. The time
saving calculated by Eq. (4.24) is Ga =5.24. The formula overestimated the time gain by

y, ' | as an indication of the code level of efficiency.
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4.3 Migrating multi-block for the particle-interaction-potential LBM

The particle-interaction-potential LBM (SC model) is a very attractive numerical
tool for simulating multi-phase and multi-component flows. The SC’s main advantage
over other LBM models lays in its capability of handling multiphase fluids with density
and viscosity contrast.
a. The migrating multi-block algorithm

A description of a 2D domain shown in Fig 4.25 is used to explain the idea of the
MMB, where three blocks of which the central is fine while the others are coarse
collectively form the simulation domain. In 3D models the same concept is applicable
but the grid intersection lines are replaced by grid intersection planes. The spatial and
temporal ratiom between the lattice spacing and the time steps of the fine and coarse
grid blocks is the same and it is defined by Eq. (2.39). The fluid and in particular at the
grid intersections has to have the same viscosity in order to maintain the same flow
conditions (Reynolds number), therefore Eq. (2.40) should be imposed on the fine and
the coarse blocks relaxation times (Yu et al., 2002) . The grid intersection between the
coarse blocks and the fine block is composed of two lines (planes) on each side of the
fine block, where the fine and coarse grids overlap as shown in Fig 4.25 (A, B, C, D).
Information transfer is required at the grid intersections from the post-collision pre-
streaming distribution functions which are calculated separately in each individual block.
When phase transition is not needed this transfer occurs at intersection nodes of a
single phase single component fluids in all blocks, as is the situation in many multi-
component simulation cases where these nodes belong to the suspending fluid. This

simplifies the algorithm. When phase transition is important the bulk fluid and therefore
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the grid intersection nodes should be treated as multiphase fluid by imposing the
particle interaction force of Eq. (2.27) with the potential function of Eq. (2.28) throughout
the various blocks. The transfer formulae are the same ones used in the model of Yu et
al. (2002). At the fine vertical lines (A & B) Eq. (2.41) is applied. At the coarse lines (C &

D) the transfer is executed by Eq. (2.42).

A B
Fine block
JRp— & +&) o o e -
——r—————— 1=
o DD
& ('/\ D '
1
o OO+
Fa ALY
Flow direction DD e B
. AN ald
= . 2 IH
Dl Fanl .Y
Y\ ALY
i | ol
oH Y
ahlds Alh
o .
FailFan mid
T T
L1 Lol L3l o1 L.L
3| |e— =2l l€— T T
D:l.t bx,r
Upstream coarse block | block |
[ D

Fig 4.25 lllustration of 2D multi-block LBM domain, with two coarse blocks and one fine
block.

b. Simulation results and discussion
Cauvitations in 2D orifice flows

Orifice flow is very common in many practical applications (flow meters, flow and
pressure reducing valves, microchannels, etc.). While flowing through an orifice the fluid
is forced to converge and the maximum convergence occurs in close proximity
downstream of the physical orifice. This location is called the vena-contracta, where the
velocity increases and the pressure decreases. If the pressure decreases at a nearby
location below the vapor pressure the fluid will experience local phase transition
(cavitations) which is typically associated with shockwaves capable of significantly

damaging the inner walls of a system.
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Phase transition occurs in single component fluids when they reach their
spinodal point. Spinodal is a point on the fluid equation of state (EOS) graph which
represents the maximum tension that a pure liquid can sustain (Sukop and Thorne,
2006). (Sukop and Or, 2005; Sukop and Thorne, 2006) plotted Eq. (2.28) and Eq. (2.30)

using the following constantsy, =4, and p, =200and had a qualitatively similar EOS

graph to that of van der Walls. The graph is shown in Fig 4.26.
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Fig 4.26 Single component multiphase fluid EOS for different values of the interaction
potential constant presented by Sukop and Or (2005), (Reprinted with permission).

For a 2D simulation and G =-120which was used in this section, the graph of Fig

4.26 indicates a spinodal fluid density p, z353[mu/lu2] and pressure
Py z14.62|:mu/ts2] expressed in lattice units. Lattice units were used in all of the

subsequent simulations (mu is mass unit, lu is spacing unit, and ts is time step). A fluid
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having conditions under which the density-pressure relationship produces a point which
coordinates fall to the left of the spinodal point is expected to have a negative
unphysical compressibility and to experience phase transition.

A domain of 601x61 measured in fine lattice units was used to simulate an orifice
flow, in which 5,368 lattice squares were fine and 7,967 were coarse. The lattice
spacing ratio was m =2 .The fine block center was positioned at coordinate point (158,
30) and extended 44 lattice sites in both horizontal directions and through the full height
in the vertical direction. This placed the fine block immediately behind an orifice with 7/u

size as shown in Fig 4.27.

100 Orifice plate

0 -

0 100 200 300 400 500 600

Fig 4.27 Simulation domain with a fine block colored with blue placed immediately
behind the orifice and two coarse blocks colored with red.

The relaxation times for the fine and the coarse grids were 7, =0.58andz, =0.54
respectively leading to kinematic viscosity v =0.0266 [luz/ts] . A parabolic velocity profile

was imposed on the inlet boundary with a central velocity U, :0.35[lu/ts] and the no

slip boundary condition on the upper and lower walls as well as on the orifice wall faces.
The extrapolation method was used for the treatment of the outlet boundary. The orifice

Reynolds number was calculated as follows:

UH .
Re=——"" %105 (4.25)
1%
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where H, is the orifice height, U, is the average orifice velocity .
Three initial densities p,were used to investigate whether local phase transition

had occurred under the above mentioned conditions. Low density fluids were simulated
(close to spinodal) since the LBM is unstable when used with high Reynolds numbers
needed for the initiation of orifice flow cavitations in fluids with higher densities. The fine
block was not allowed to move since the subject of interest was the location of the vena-

contracta, positioned directly behind the orifice as shown in Fig 4.28.
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Fig 4.28 Top: Instantaneous streamlines of the flow through a non-central orifice with
Re ~ 788 andpl.=450[mu/lu2] The vena contracta location was determined as the

position where the streamlines were most densely packed indicating higher velocity and
lower pressure region. Bottom: Velocity contour in the horizontal direction.

The cavitation number is a dimensionless parameter, used for the description of

the magnitude and the intensity of cavitations in a flow (Mishra and Peles, 2005) and it

is given by:

www.manaraa.com



78

g =t b (4.26)
EPUg

where p.is the average pressure downstream of the orifice, p, is the fluid vapor
pressure, and U, is the average orifice flow velocity.

The pressure and density values were collected at the location of the vena-
contracta from the three simulations. Results presented in Table 4.4 show that phase
separation occurred only in the first case when p. =360[mu/ luz]was used which led to
a density and pressure drop below spinodal in correspondence with the graph of Fig
4.26. This was also evident from the insets of Fig 4.29. The calculated cavition number
was 4, =0.00063. The small value of the cavition number stemmed from the use of a
small pressure difference in Eq. (4.26), which was a consequence of using low initial

density and low orifice Reynolds number in the simulation.

Table 4.4 Pressure-density measurements at the vena-contracta location from the three
simulations are presented below

Initial density 360 400 450
Local density 348.38 387.09 435,47
pressure 14.61 15.17 17.44

The pressure-density relationship from the three simulations was plotted in Fig 4.29,
with the insets showing the density contours of the various cases. The experimental
picture of Mishra and Peles (2005) shown in the left top inset of Fig 4.29 is for

qualitative comparison.
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Fig 4.29 Pressure-density relationship for three different initial densities (Dotted line is
to guide the eye). Phase separation occurred only for the initial density p, =360[mu/lu2]

since the pressure-density intersection point fell into the unphysical negative
compressibility region shown in gray color. The figure insets are for the density contours
from the three cases. The top left inset is from the experimental work of Mishra and
Peles (2005). (Reprinted with permission).

Transient flow metering in 2D orifice

To demonstrate the MMB applicability to single component flows, the input

velocity was changed gradually between 0.05<U,<0.165[lu/ts] with a step

AU, =0.005[lu/ts]once every 2,000 time steps. This was to mimic an orifice flow under

transient conditions. The initial density used for this simulation was p, =800[mu/lu2]to

minimize the compressibility effects. The fine block was increased to cover 10,248
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lattice squares (168x61) and it was allowed to shift one coarse lattice unit each 8,000
time steps in the flow direction. The objective was to let the fine block cover the region

behind the orifice to enhance the accuracy of the calculations results as shown in Fig

- Fine block starts at x = 112
100 Time step 2000

4.30

0 L | I L L L L L L 1 L L 1 L
400 500 600
Fineblock starts at x — 118
Time step 28000
0 = = L Tt
0 100 200 300 400 500 600
Fine block starts at x — 124
100 IT Time step 56000
:h
0 Ll ] )1 I —— —— e e e ——
0 100 200 300 400 500 600

Fig 4.30 Instantaneous streamlines for time steps 2,000, 28,000 and 56,000 with
increasing input velocity. The insets show the time advancing fine block in which the
calculation is performed with more iterative steps.

For an orifice flow the following analytical formula is applicable for the calculation
of the mass flux for an incompressible laminar fluid in a horizontal section (Mishra and

Peles, 2005):
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— 2(}71_[72)
0 CdAo\/,Oi(l[Ao/A1]2)

. 2 i - )
m = P,Q = CdAo pl(i)lﬁ4p2

(4.27)

where C, = f(f,Re)is an experimentally determined coefficient, 4 is the area of the
orifice, # = d/H is the orifice size over the channel height, and p,, p, are the pressure in

the upstream section of the orifice and the vena- contracta, respectively.

Mass flux in the horizontal direction
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Fig 4.31 Horizontal component of the mass flux presented at three locations and three
consecutive time steps.

The mass flux can be also determined directly from the simulation results,

assuming a domain of a unity thickness by the following formula:
b
i, =W j pudy (4.28)

where the thickness w=1[/u], uis the horizontal component of the velocity and a,bare

points with the same horizontal coordinate located on the lower and the upper walls,
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respectively. The horizontal component of the mass flux was calculated for the
described locations and time steps as shown in Fig 4.31.

Equation (4.28) was solved numerically and Eq. (4.27) forC, =1.0 was calculated
analytically. The pressures p, and p, were collected from the simulation results and used

in Eq. (4.27). The results are presented in Table 4.5. The coefficient C,, accounts for

the orifice geometry discharge effects and for the viscous effect which were neglected in
the derivation of Eq. (4.27) from Bernoulli’s equation.

Table 4.5 Calculation of the mass flow rate by the analytical formula of Eq. (4.27) and
directly by Eq. (4.28) for three time steps.

Time step 2000 28000 56000
X [lu] 154 160 166
Re 126 275 436
Eq. (28) 534.98 892.13 1196.27
Eq. (29) 298.74 787.63 1197.78

The difference between the two sets of results presented in Table 4.5 could be
used for the derivation of the discharge coefficient, although care should be taken since
the outcome could deviate from the experimental one due to the compressibility effect of
the LBM (Guo et al., 2000), and the two dimensional nature of the domain used in this
simulation.

Computational time saving
To estimate the computational time advantage of the MMB model the following

formula was introduced:
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NN,
Ga=C .

¢ 1
LN, +?(NX —L)N,

(4.29)

where Gais the time gain ratio, V,and N are the domain length and width in fine grids

spacing respectively,0.9<C, <1.0is a code efficiency coefficient, and L _is the length of

the fine block. This formula is applicable only for 2D models, with the fine block covering

the entire width. For the first simulation with L, =88 and estimated C.=0.95the time

gain ratio calculated by Eq. (4.29) was Ga =3.75. This gave the MMB algorithm a 375%
lead in computational time over the standard LBM for the aforementioned case.
Droplet sedimentation and settling on a horizontal wall in 3D geometry

The SC multi-component model lends itself as a convenient tool for simulating
the sedimentation of a droplet on a wall with the inclusion of the wall surface energy role
due to the incorporation of the fluid-solid interaction force by Eq. (2.34). This is a
relevant problem to many applications, and in particular to those dealing with
hydrophobic and hydrophilic surfaces. On the other hand the MMB offers computational
time saving and enhanced interface resolution which is highly valued in 3D simulations.

Droplet sedimentation towards a horizontal plane is characterized by the Bond
number which is a measure of the relative influence of gravity with respect to the

surface tension:

_ ApgR’
Y

B

(4.30)

where Apis the density difference between the constituent fluids, R is the undistorted

droplet radius, and y is the uniform surface tension.
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A domain of 60x60x340 measured in fine lattice units was used and it was

composed of one fine block consisting of 216,000 nodes and two coarse blocks with a

total of 126,000 nodes. The spacing ratio wasm =2, the relaxation times were 7, =0.9

/

andr,=0.7 for the fine and coarse blocks, respectively. This yielded a kinematic

viscosityv =0.133[ i’ /ts | The suspending fluid had a density o, =1 mu/li’ |, while the

suspended fluid density waspR=4[mu/lu3]. The fluid-fluid interaction constant was

G .=05.

oo

Sessile static non-wetting droplet
The droplet static shape was investigated by letting it sediment under gravity
towards the horizontal wall. The fluid-solid interaction was turned off. The droplet was

positioned in the center of the fine block and had a diameter D =36[/u]. The no-slip

boundary condition was imposed on the lower and upper horizontal walls and a periodic
condition was applied in all other directions. The migrating fine block followed the
droplet mass center until the lower grid interface reached the fine grid coordinate z =2
which was treated as a wall, and then the droplet was left to sediment alone until it
settled on the lower wall as shown in Fig 4.32 Under these conditions the droplet is
expected to assume a non-wetting sessile shape.

To determine the characteristics of a non-wetting drop resting on a horizontal
wall Hodges et al. (2004) solved the following dimensionless Young-Laplace

relationship P, —BH =k where P,was the droplet static pressure, Bthe Bond number,

H the height of the drop, and kthe droplet curvature. Hodges et al. (2004) presented

their results in a graph with the Bond number used as the independent variable.
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(A) (B) (©) (D)

Fig 4.32 Phase field contours for four consecutive time steps, Re, =9.07and B=1.66.The

migrating fine block (in blue) moved with the droplet in (A) and (B), then the droplet
moved alone in (C) and settled on the wall in (D).

Seven values for the gravitational constant were used in the proposed model to
produce a variety of conditions(0.11£B$3.33) which resulted in different droplet static
shapes. The uniform surface tension from Eq. (4.30) was calculated by the following
relation: o, =ApRwhere Apwas the pressure difference measured between the fluid

inside and outside of the droplet before it settled on the wall. The droplet height and wall
contact length were measured and scaled by the droplet radius. The presented results

in Fig 4.33 matched reasonably well the 2D results of Hodges et al. (2004).
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Fig 4.33 Dimensionless droplet height and wall contact length for various Bond
numbers. The lower inset show the 3D view of the droplet shapes and the upper inset is
their 2D cuts.

Static wetting droplet
For stationary wetting droplet resting on a horizontal wall the contact angle is
determined by Young’s equation:

Oy —O
cosf =8-Sk

(4.31)

O-RB
whereo,,, oy, and oy, are the interfacial tension between the solid wall and the

droplet, the solid wall and the suspending fluid, and between the two immiscible fluids
respectively. In the SC model the interfacial tensions are directly proportional to the
interaction forces of Eq. (2.33), and Eq. (2.34), and these forces are dependent on the

constant which determines their magnitude.
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Fig 4.34 Phase field contours for four consecutive time steps withG* =-0.11,
G2 =0.14,B=1.11andRe, =5.52.

ads

Huang et al. (2007) proposed the following relation for the calculation of the

contact angle using LBM cohesion parameters:

B _ AR
cos @ = -Cars =Gt (4.32)
G PP

oo 2

where p, = p, and p, is a dissolved density of the suspending fluid into the droplet. The
fluid-solid interaction constants for the suspending fluid G?, =-0.11, and for the droplet

R
Gads

=0.14were selected carefully so that their corresponding contact angle was in
agreement with the calculated value by Eq. (4.32) and yielded an wetting droplet with an

acute contact angle 8 ~76”. The dissolved density in Eq. (4.32) was p, =0.04[mu/ lu3].
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Three values for the gravitation constant were used in this simulation to modify the

Bond number4.0x107° < g<12x10™. The phase field contours of four consecutive time

steps are shown in Fig 4.34.

Comparison of the results from the wetting and non-wetting droplet cases is

presented in Fig 4.35. The inclusion of the surface energy caused an increase in the

droplet dimensionless contact length, and a decrease in the dimensionless height.

However the droplet contact angle was not affected by the change in the Bond number

as shown in the insets of Fig 4.35, and this was consistent with Eq. (4.31) and Eq.

(4.32) since both equations were independent of the acceleration constants which was

used to vary the Bond number.

2 W, .
=
20
& | TR
z T teaigy, ygee
2 . T M
e | CL PR
O R B,
2 . <M Hd [wetting)
S e
.g fol Hd (non-wetting)
g <ot oo Ll [wetting)
&

o 02 04 0.6 08 1 12

Bond number

v ¥ Y

Dinensionless contact length

o

Fig 4.35 Comparison of the dimensionless droplet height and wall contact length for
various Bond numbers between the wetting and the non-wetting droplet cases. The

insets are the phase field contours for the wetting droplets.

Effects of the solid-fluid interaction constants on the drainage underneath wetting

droplets
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Lister et al. (2006) studied the drainage underneath sedimenting quasi-static
drops using the lubrication theory. A regime diagram was produced by solving a
modified pressure equation for the fluid just outside the drop by:

oP, oh

p==,t=Apgh———"x5 (4.33)

(1 +h )3/2

and solving a film evolution equation expressed as follows:

3
Y [ T ) (4.34)
(1+4])

X

where his the height, ois the surface tension, Bis the Bond number, and Apis the

density excess. Several regions of drop solutions were delineated and they included a
sessile-drop with no fluid trapped underneath the drop, equilibrium region with trapped
fluid, which extremes led to drop break up or to drainage, and a non equilibrium region
(sliding collar). It is obvious from Eq. (4.33) and Eq. (4.34) that the fluid-solid interaction
was not considered in the governing equations.

In the proposed model the fluid trapped underneath the droplet is approached
through analyzing the dependence of this process on the selection of the fluid-solid
interaction constants. The trapping of fluid under the droplet occurs when the
magnitudes of the attraction force between the droplet and the wall is relatively large,
and for critical values for the interaction constant of the suspending fluid with the wall as
shown in Table 4.6. The characteristics of the flow in the trapped film are determined by
the balance of the forces due to the hydrostatics, the capillary pressures, and the fluid-

solid interaction forces.
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Table 4.6 Droplet characteristics dependence on the selection of the fluid-solid
interaction constants, for a constant Bond number B =0.55

R 3 B B
G, G, SD G4 Gy NE
-0.11 Gy <0.16 Giogs ™ Gy, > 0.16
016
-0.12 Gy <0.11 Goge ~ G,y > 0.11
011
-0.14 G < Gags ™
-0.004 -0.004 0 004
y_ .

G,gs interaction constant , S Static drop, QE quasi-equilibrium, NE non-equilibrium

Three major regions were identified: a) static drop region in which the droplet
wets the surface and the attraction force with the wall supported by the droplet weight
dominates all other forces, thus leading to complete film drainage, b) quasi-static region
where the interaction of the suspended fluid with the wall and the hydrostatic (buoyancy
of the trapped lighter fluid) and capillary forces counterbalance the droplet wall
attraction leading to a stable film underneath the droplet, c)non-equilibrium region in
which the force dominance favors a non-static film shape, and this leads to droplet
random shift from its initial location and potentially to its break-up.

Computational time saving

For the estimation of the time gain ratio resulting from the use of MMB in the 3D

simulations the following formula was used:
N.N,N.

Ga=C, 1 (4.35)
LNN,+ (N.~L)NN,

where N, N and N are the domain length and width and height respectively expressed

in fine grids spacing, and L_is the height of the fine block. The formula is applicable only
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to 3D models, with the fine block covering the entire width and length. A time gain ratio

Ga~4.17was calculated for the above presented simulations using Eq. (4.35) for

L =60 and estimatedC, =0.95.
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CHAPTER 5
HYBRID LBM FOR SURFACTANT-COVERED DROPLETS

This work aims at adding a humble contribution to the wealth of several
numerical methods proposed by some devoted researchers for the study of surfactant
covered drop’s behavior under diverse flow conditions. The work proposes an
expansion of the Gunstensen model applicability to cover the study of immiscible
droplets with nonionic insoluble surfactant adhering to their interfaces. Adding the
surfactant effects on the Gunstensen model is facilitated by the ease in the initialization
and the tracking of the surfactant concentration on the interface, which location is well
defined in the LBM model at each time step, and by the independent local application of
a non-isotropic interfacial tension on the droplet external surface.
5.1 Surfactants convection-diffusion equation

The surfactant concentration distribution on the interface of an immiscible mixture
is governed by the following dimensional form of the general time-dependent surfactant

convection-diffusion equation (Milliken et al. 1992):

Or+V -(ul)+klu, =D VT +q,,, +4, (5.1)
In Eq. (6.1) 0TI accounts for the temporal change in the interface surfactant
concentration, VS-(uSF) is the convection term, and kI'u models the effects of the
change in the surface curvature on the surfactant concentration distribution. D VT is
the diffusion term, ¢, accounts for the interface surfactant formation due to chemical

reaction and ¢, accounts for the net flux to the interface from the bulk phases due to

adsorption-desorption (both ¢,,,,and ¢, effects are not considered in this work).
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The objective of this sub- section is to rewrite Eq. (5.1) as a function of the LBM

variables in 2D geometry. The units used in this work are identified as follows: spatial

lattice unit[/u], time step[zs], mass unit [mu], lattice mole [Imol].

For insoluble surfactant, subjected to flow conditions, in which the convection
time scale is much greater than the diffusion time scale, the time-dependent convection-

diffusion equation is reduced to the following form:

OT+V, -(uT)+kIu,=0 (5.2)
whereV is the surface gradient,I"is the surfactant concentration, kis the curvature
calculated by Eq. (2.17), u,is the normal velocity magnitude at the interface and it is
given by:

u,=u-n=un +un, (5.3)
where uis the macroscopic velocity derived from Eq. (2.9). u, is the tangential velocity

with vertical and horizontal component magnitudes expressed respectively as:

= N

U, =u, —nu —nnu,

' (5.4)

u,—nnu,

)Y

ol

U, =u,—n

<

Using the product rule VS-(uSF) can be expressed as a function of the tangential

velocity and the normal to the interface components, respectively. The termkilu,is

straightforwardly derived as the multiplication of three scalar quantities. Combining all
the terms of Eq. (5.2) leads to the following simplified equation:

or+Cor+Cor+cr=o (5.5)

where the coefficients C; are expressed as follows:
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Cl = usx
C,=u (5.6)
C = (knxux +hknu, ) + ni@xuﬂ + nfayusy -nn, (6yusx + 8xusy)

When the diffusion of the interface surfactant is considered, the surfactant

concentration time dependent convection-diffusion equation is given by the following:
0T +V, -(uI')+klu, =D VT (5.7)
D_is the surface diffusion constant which can be determined in lattice units [luzts”]from

the following relationship: Pe, = 7R} /D, , where Pe,is the surface Péclet number which

represents the ratio between the convection and diffusion of the surfactants on the

interface and R, is the droplet radius. The final form of the equation is given by:
or+CoIr+CoIr+Cr+Co,Ir+Co,T+Co,I'=0 (5.8)

where the coefficients C; are calculated by the following:

C, = (nf —I)DS
C; =(n} -1)D, (5.9)
Cy=2n.n D,

The surfactant concentration effect on the interfacial tension of the droplet can be
imposed by either one of the surfactant equations of state; the Adamson linear equation

(Valenkar et al., 2004):
o,=0,-I'RT (5.10)

or the Langmuir non-linear equation (Eggleton et al., 2001):

o =0, +RIT, m(l—rLj (5.11)

0
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where o, is contaminated interfacial tension, Ris the universal gas constant and T is the
temperature in Kelvin. The two equations can be rewritten for convenience as follows:
o, =c,(1-E'") (5.12)

o, =0, | 1+E,In(1-T")] (5.13)

where o,is the surface tension of a clean droplet, E the surfactant elasticity. £, is a

positive dimensionless parameter which determines the strength of the surfactant
concentration effects on the droplet interfacial tension and it is given by (Valenkar et al.,

2004):

E, =—2"0 <] (5.14)

The dimensionless surfactant concentration is calculated by the following ratio:

*

r= (5.15)

r
FOO
whereI'  is the saturation surfactant concentration which can be derived from Eq. (5.14)

in lattice units as sz%[lmol/luzj and the product RT=1/3 is used for the

isothermal LBM.
5.2The hybrid LBM model

The proposed model uses the Gunstensen LBM for the calculation of the flow
pressure, the velocity field and for tracking the fluid-fluid interface. During initialization of

the LBM, and after locating the interface’s nodes through the magnitude of the phase

field gradientVp" of Eq. (2.16), an initial surfactant concentrationT,is imposed on the

interface with a controllable thickness as shown in Fig 5.1 (C). The selected value of I,
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should produce the desired surfactant coverage ¢, =TI',/T", needed for the particular

case.

(A) (B) ©)

Initial surfactant
]

Interface thickness 4

—©O

concentration

Fig 5.1 Initialization of the surfactant concentration at the interface of a 3D droplet: (A)
3D domain with a central droplet, (B) 2D view of the phase field showing the interface
thickness, (C) 2D view of the uniform surfactant concentration contour on the interface.

The calculated velocity component magnitudes(ux,uy), the droplet curvature and

the interface normal component magnitudes (k,nx,ny)are then used for the derivation of

the simplified surfactant-diffusion equation, which is eventually solved by a finite
difference scheme resolved on the same spatial lattice grid. The hopscotch explicit and

unconditionally stable finite difference scheme (Tanehill et al., 1998) is used here. This

scheme uses two consecutive sweeps through the domain. For the first sweep Ff;' is

calculated at each grid point, for which i+ j+nis even, by a simple explicit scheme:

n+l n n n n n n n n
Fi,j A_[Fi,/ el Fi+1,j2:,~17j e Fi,j+12;1—11~7j1 LCI"+C, ri+l,j —21—11.;. +1"HJ
Y Ax (5.16)
+C5 F?,jﬂ - 2F;'1,2j + F?,j—l n C6 (F?H,jﬂ _F:’Jrl,j—l _ F?—l,jﬂ - F;’—l,j—l j -0
Ay 2Ax 2Ay 2Ay

For the second sweep Fj.fjl is calculated at each grid point, for which i+ j+nis odd, by a

simple apparent implicit scheme:
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l—wln-;-l _ FIn/ F;1+l _ F7+1 l—wa-l _ 1—~7+1 rn+l _ 21—*:1-;1 + l—wa-l

+ Cl i+l,j i-1,j + C2 i,j+1k i,j-1,k + C4 i+l,j / i-1,j
At 2Ax 2Ay Ax (5.47)
r?jlﬂ - 2Ff;.l + r?jl—l n+l Cﬁ r?:ll,jﬂ - F?lel,j71 r?jll,jﬂ - r?jll,j—l _
+C; > +CIM" + - =0
Ay 2Ax 2Ay 2Ay

The second sweep is expressed in an implicit form, but it is solved as an explicit

equation, because the first sweep provides the necessary information needed for the

computation ofl“j?;l. The truncation error for the used hopscotch scheme in the

proposed model is of the following orderO[At,(Ax)2 ,(Ay)z]

Beside the fact that the hopscotch scheme is unconditionally stable, it is also simple for
coding especially if the time step for the finite difference is to be modified from that of

the LBM. This can be achieved by using the three-point Lagrangian interpolation for the

calculation of the required coefficients C;at a fraction of the LBM time step as follows:

@W=2W”ﬁ-&:ﬂtﬁ (5.18)

[ a— o q=1,p#q t —t
1<r<n p

A ratio n=t,,, /t,, =4 was used in this model unless otherwise was mentioned, and ris

a positive integer1 <r <n. The coupling of the finite difference scheme with the LBM is
realized through the surfactant equation of state. In this model the non-linear equation
of state was more often used in the simulations.

Halliday et al. (2007) derived the following relationship between the pressure jump

across the interface and the surface tension parameter:

PR
jﬂmzak (5.19)

Py

AP =
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where Fis the force from Eq. (2.16) and nis the interface normal, kis the curvature
from Eq. (2.17), and P,, P, are the measured pressures outside and inside the droplet,

respectively. This suggests based on Laplace’s law for the surface tension that the
magnitude of the surface tension in the model is equal to that of the surface tension

parameter o from Eq. (2.16); therefore Eq. (5.13) can be re-evaluated as follows:
a=a,|1+En(1-T")] (5.20)

where ¢ is the surface tension parameter for a clean droplet. The surface tension

parameter in the proposed model is thus non-isotropic, and it rather changes locally
based on the outcome of Eq. (5.20), which is mainly dependent on the calculated local
surfactant concentration by Eq. (5.8).

No upper bond on the surfactant concentration is required in this model. An
important factor which prevents any further build-up of the concentration is the
Marangoni stress which is expressed as follows (Hu and Lips, 2003):
—V.o0,=-0,0,-VT (5.21)
The partial derivative 6.0 where cis expressed by Eq. (5.13) yields the following

equation:

RT
61~GS Z—W (522)

Equation (5.21) and Eq. (5.22) indicate that an increase in the surfactant surface
concentration leads to an increase in the Marangoni stress, which in turn slows down
the surface velocity and hampers any further build up of surfactant towards the regions
of higher concentration.

The flow chart for the hybrid LBM for surfactant covered droplets is presented in Fig 5.2.
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Fig 5.2 Flow chart for the hybrid LBM for surfactant covered- droplets.

5.3 Simulation results and discussions

To demonstrate the proposed model suitability as a tool for investigating the
surfactant-covered droplet behavior under diverse flow conditions, the model was used
for the study of the surfactant effects on the droplet deformation in simple shear flow,

uniaxial extensional flow and on the terminal velocity of a buoyant surfactant-covered

droplet.
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a. Surfactant-covered droplets in simple shear flows

To study the effects of surfactants on the droplet behavior in simple shear flows,
the setting of the base model parameters was decided through studying the flow
deformation characteristics of a surfactant-free droplet(I', =0). The numerical results
were then compared with the experimental work of Cristini et al. (2002), who
investigated the transient deformation of clean droplets in dilute emulsions for large
values of the capillary numbers. Cristini et al. (2002) studied the transient lamellar
microstructures of some polymer blends which exhibited elongation and flattening of the
droplets under strong shear flow conditions and for low viscosity ratio. Such blend
morphologies were attractive because they caused a reduction in the permeability of
certain blends to hydrocarbon and to oxygen, and increased their impact strength
(Cristini et al., 2002).

The droplet lamellar structure shown in Fig 5.3 is characterized by the

normalized length R /R, , thickness R, /R, and width R, /R, , where R,is the initial droplet

radius. The interfacial area generation during the droplet deformation is calculated by
Rl R3/R§ )
A domain consisting of 123[lu3] was used in this simulation with a suspended

central clean droplet having a radius R, =20[lu]. The interfacial tension parameter was

a,=2x10", and a shear rate 7'/=9.75><10‘5[ts‘1]was imposed through moving the

upper and lower walls in the directions shown in Fig 5.3 by the following:

y
ol x (5.23)
0
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Fig 5.3 lllustration of the LBM simulation domain with a central clean droplet under
simple shear stress and the three characteristic radii used in the analysis of the results.

The periodic boundary condition was used in all other directions. The relaxation time for
the ambient fluid was 7, =1.213 and for the droplet 7, =0.571 leading to a viscosity ratio
n=0.1. The interface viscosity was calculated by Eq. (2.15). The density of both fluids
was set to p = 2[ mu/lu’ |.

The droplet deformation in simple shear flows is characterized by the capillary
number which is the ratio of the droplet deforming shear stress and the restoring stress

due to the interfacial tension:

Ca=Robu? (5.24)

Oy
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where o, is the interfacial tension of a clean droplet and 1, is the dynamic viscosity of

the matrix. Equation (5.24) yielded a capillary number Ca =4.6in correspondence with
one of the experimental condition of Cristini et al. (2002). The resulting dimensionless
width of the droplet from the proposed model with respect to the dimensionless time is

presented in Fig 5.4.

_3
RO
1
|
9 Y |
0 4 LBM model _
| — Cristini numerical N e
+++ Cristini experimental e
03 h - i B L i A i i
0 1 2 3 4 5
q} I

Fig 5.4 Comparison of the proposed numerical model results with the experimental and
numerical results of Cristini et al. (2002) for a clean droplet dimensionless width as a
function of the dimensionless time. The viscosity ratio is4=0.1, and the capillary
number is Ca =4.6 . (Reprinted with permission)

The clean droplet case showed a good agreement with the experimental data for
the dimensionless time yt <2.0 ;Therefore the investigation of the area generation due to
the presence of surfactants will be limited to values of the dimensionless time ¢ <2.0

while other droplet flow deformation characteristics will be discussed for time step
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yt=3.12 corresponding to the end of the simulation time which was dictated by the

desire of not allowing the droplet to deform beyond the periodic boundaries.

Surfactant coverage effects
To test the effects of surfactant coverage c, on the droplet deformation under
simple shear flow, the surfactant elasticity was set to £, =0.2as the use of this value

was justified by Velankar et al. (2002) for low-molecular-weight surfactants. The

saturation surfactant concentration was calculated using Eq. (5.14) and the resulting

value wasT, =1.2x10*[/mol/lu’ |. This allowed the selection of the various initial

surfactant concentrationsI’, in order to achieve the range of surfactant coverage

0.2<c¢, <0.6. The surface Péclet number was set to Pe, =10.

The interfacial area generation was calculated for the various cases at a

dimensionless time step yz=1.17 corresponding to the greatest value for the ratio %
0

which was presented in Fig 5.4. The results shown in Fig 5.5 indicate an increase in the

area generation with the increase in the surfactant coverage as a consequence of the

simultaneous increase in the droplet elongation(R, ), and flattening (R, ).
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Fig 5.5 Interfacial area generation for droplets in simple shear flow with respect to initial
surfactant coverage presented at a dimensionless time stepys=1.17 and capillary

number Ca=4.6.

The dimensionless length R /R, , the percentage elongation increase relative to

the clean drop, and the reference angle & of the droplet inclination with respect to the

horizontal direction were calculated at dimensionless time stepys=3.12. The results

presented in Table 5.1 imply that the greater the surfactant coverage the higher the
values of the dimensionless length, the percentage elongation, and the lower the angle
of the droplet inclination.

It is clear from the surfactant concentration contours in Fig 5.6 (C), that the
regions of higher surfactant concentration are located around the tips of the droplet in
the directions of the walls velocities, as a consequence of the convection of surfactants
on the droplet interface. This also led to a greater droplet deformation as this was

evident from the results of Table 5.1.
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Table 5.1 Transient dimensionless length, percentage elongation, and reference angle
of inclination measured in degrees, for the clean droplet and for the droplets with three
initial values of surfactant coverage c,, at dimensionless time step yr =3.12.

Con R /R, % 6
0 2.66 100.0 20.30
0.2 2.1, 101.9 19.67
0.4 2.78 104.6 19.08
0.6 2.87 108.0 18.17

The phase field contours for clean and contaminated droplets and the surfactant
concentration contours corresponding to the various values of the surfactant coverage

for dimensionless time y¢ =3.12 are presented in Fig 5.6 (A-E).

The graph in Fig 5.6 (F) shows the transient values of the maximum
dimensionless surfactant concentration with respect to the dimensionless time. The
graph indicates a temporal increase in the maximum concentration due to convection
followed by a slight decrease in these values, which is an expression on the interplay
between the convection and the dilution of the surfactant due to the increase in the

interfacial area of the droplet. This effect is slightly less pronounced in the case of

surfactant coverage c,, = 0.2 since the droplet surface is relatively smaller.
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Fig 5.6 (A) 2D view of the phase field contours from the central xz plane for the
contaminated droplets. (B) 3D view of the phase field contours for the contaminated
droplets surrounded by a fictitious block to show the variance in their dimensions. (C)
2D xz plane view of the surfactant concentration contours. (D) 2D xz plane view of the
phase field contour for a clean drop. (E) 3D view of the phase field contour for the clean
drop. (F) Graph representing the transient maximum values of the dimensionless
surfactant concentration relative to dimensionless times. The results are for

dimensionless time step y¢ =3.12, capillary number Ca =4.6, surfactant elasticity £, =0.2
and Péclet number Pe, =10.

Surfactant elasticity effects

Surfactant elasticity constants in the range of 0.2<E  <0.6were used to test the

effects of the elasticity on the deformation of the droplet in simple shear flow. The

saturation surfactant concentration was modified to affect a change in the surfactant
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elasticity since the proposed model was isothermal, and several values were calculated

by Eq. (5.14) which gave the following range of saturation concentration

12x10™ <T, <3.6x10™*[Imol/lu* |. The values for the initial concentration T',were

selected accordingly in order to maintain constant surfactant coveragec, =0.2. A

surface Péclet number Pe =100was used in the simulations. The interfacial area
generation was calculated for the various cases with varying surfactant elasticity at the
dimensionless time step yr =1.17. The results presented in Fig 5.7 shows an increase in
the area generation with the increase in the surfactant elasticity.
Interfacial area generation
1.82

131

1.3

1.79

&N,

1.78

1.77

1.76
0 a1 0.2 03 04 0.5 06 0.7

E

0

Fig 5.7 Interfacial area generation for droplets in simple shear flow with respect to
surfactant elasticity presented at a dimensionless time stepyr=1.17 and capillary

number Ca=4.6.

The dimensionless droplet length, percentage elongation, and the angle of
inclination of the droplet relative to the horizontal axis are presented in Table 5.2. A

trend of increased dimensionless length, percentage elongation, and decreased
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inclination angle of the droplet with the increase of the surfactant elasticity is observed
from the results of Table 5.2.
Table 5.2 Transient dimensionless length, percentage elongation, and angle of

inclination measured in degrees, for three initial values of surfactant elasticity £, at
dimensionless time step yr =3.12.

£, R /R, %o 6°

0 2.66 100.0 20.3
0.2 2.72 102.1 19.45
0.4 2.76 103.8 19.18
0.6 2.82 106.0 19.06

The angle of inclination is dependent on the Marangoni stress which was given
by Eq. (5.21). At the droplet caps the interfacial tension changes largely, hence larger
Marangoni stress forces the droplet to align with the flow direction (Drumright-Clarke,
2004). The slow decrease in the inclination angle between the three contaminated
droplets cases is indicative of the small difference in their Marangoni stress due to the
constant surfactant coverage used in the various cases and the similarity of the flow
conditions.

The phase field contours for clean and contaminated droplets, and the surfactant
concentration contours are shown in Fig 5.8 (A-E). Lower regions of surfactants
concentration are observed around the droplet waist and higher regions around its tips.
The graph in Fig 5.8 (F) shows the droplet transient minimum dimensionless surfactant

concentration relative to the dimensionless time steps.
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Fig 5.8 (A) 2D view of the phase field contours from the central xz plane for clean
droplets. (B) 3D view of the phase field contours for the contaminated droplets.(C) 2D
view of the surfactant concentration contours in the xz plane. (D) 2D view of the phase
field contour for the clean droplet in the xz plane. (E) 3D phase field contour for the
clean droplet. (F) The graph represents the transient minimum values of the
dimensionless surfactant concentration relative to dimensionless times. The results are
for dimensionless time stepyr=3.12, capillary numberCa=4.6, surfactant coverage

¢,, =0.2, and Péclet number Pe, =100 .

The minimum concentration decreased steadily due to the combined effects of

surfactant convection and dilution. Slightly higher values were observed in the case of

E, =0.2 due to a relatively smaller droplet interfacial surface.

Peclet number effects
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The effects of the Péclet number were investigated for the simple shear flow

case with surfactant elasticity £, =0.2, surfactant coveragec, =0.2 and saturation
concentrationT", =1.2x10™*| Imol/lu* |. The following range of Péclet numbers was used

1< Pe, <100.

Interfacial area generation
178 |
1.778
1.776 O
1.774 O

Rl R3 1.772
R: 1.77

1.768
1766 |
1.764 { Clean drop
1762
1 10 100

Pe

5

Fig 5.9 Interfacial area generation for droplets in simple shear flow with respect to the
surface Péclet number presented at a dimensionless time stepys=1.17 and capillary

number Ca =4.6.

The change in the interfacial area generation due to the change in the surface
Péclet number is presented in Fig 5.9. The graph shows very minimal decrease in the
area generation with the increase in the values of the Péclet number. This could be
explained by the fact that at low Péclet numbers, surfactants are resistant to convection.
Therefore in greater part of the interface, the droplet interfacial tension is lower that of

the clean droplet. This increases the droplet width R, and help increase the area

generation.
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The dimensionless length, the percentage elongation, and the angle of the
droplet inclination are presented in Table 5.2. The results reveal a marginal Péclet
number influence on the droplet elongation, because at low surfactant coverage, and
low surfactant elasticity, severe flow conditions are required to increase the surfactant
concentration to levels capable of affecting a substantial influence on the interfacial

tension due to the nonlinear nature of the surfactant equation of state used in this work.

Table 5.3 Droplet transient dimensionless length, percentage elongation and angle of
inclination measured in degrees forl < Pe, <100 at dimensionless time step y =3.12.

Pe, R /R, Yo &
1 2.69 101.3 19.74
10 2.71 101.9 19.67
100 2.72 102.1 19.45

The dimensionless surfactant concentration valuesT" were calculated in a central
xz plane along the lower circumference of the droplet. The calculation was done in the

direction of the major axis. The coordinates x, ,=x/cosd were normalized by the

droplet radius R, , and the corresponding dimensionless concentrations are shown in Fig

5.10 (D). The phase field and surfactant concentration contours are shown in Fig 5.10
(A-C).

It is evident from Fig 5.10 (C, D) that at high Péclet numbers more surfactants
are convected towards the tips and away from the middle of the droplet, and this is due

to the dominance of the convection role over the diffusion effects.
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Fig 5.10 (A) 2D xz view of the droplets phase field contours.(B) 3D view of the droplet
phase field contours. (C) 2D view of the surfactant concentration contours. (D) The
graph represents the dimensionless surfactant concentration relative to a position
measured on the lower droplet circumference in the direction of the major axis. The
results are for dimensionless time step y¢ =3.12, surfactant elasticity £, =0.2 , surfactant

coverage ¢, =0.2 and capillary numberCa =4.6.
b. Surfactant-covered droplets in uniaxial extensional flows
To simulate uniaxial extensional flow in the same domain used for the previous

cases, the velocity field was modified as follows:

1 0 0
u’(x)=y/0 =05 0 |-x (5.25)
0 0 -05

www.manaraa.com



113

where shear rate 7 =1.68x107 [ts‘l] was used, yielding a capillary number Ca =0.8.

Surfactant coverage effects
The surface Péclet number was set to Pe, =100 and the surfactant elasticity to
E,=0.2. The surfactant coverage was varied in the range of0.2<¢, <0.6. All other fluid

properties were kept unchanged. The simulation domain for a central droplet subjected

to uniaxial extensional flow is shown in Fig 5.11.

Fig 5.11 Phase field contours for a central droplet in uniaxial extensional flow.

The surfactant concentration distribution under such flow conditions is symmetric
and it exhibit higher values towards the tips of the droplet and lower values in the center
as this is shown in Fig 5.12 (A-C). The graph in the Fig 5.12 (D) represents the

dimensionless surfactant concentration with respect to the x coordinates normalized by

the droplet radius R, .
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Fig 5.12 (A-C) 2D xz view of the surfactant concentration contours for a central droplet
in uniaxial extensional flow, for three values of the surfactant coverage. (D) Graph
representing the dimensionless surfactant concentration in the xz plane as a function of
the horizontal coordinate normalized by the droplet radius for y#=0.604,Ca=0.8,

Pe =100and E;=0.2. The insets in the graph are for the 3D view of the phase field
contours.

It is clear from the 3D phase field contours insets of Fig 5.12 that the droplet
dimensionless length increased with the increase of the surfactant coverage.
Capillary number effects
To check the effect of the capillary number on the transient droplet behavior in

extensional flows the following range of numbers was used08<Ca <1.2.
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Fig 5.13 (A-C) 2D view of the surfactant concentration contours on droplets in uniaxial
extensional for a range of capillary number08<Ca<1.2 . (D) Graph representing the

values of the droplet dimensionless R /R,, the dimensionless maximum T and
minimum T surfactant concentration, respectively at dimensionless time step
yt=0.604 . The insets in the graph are for the 3D view phase field contours.

The dimensionless lengthR /R,, the maximum dimensionless surfactant

concentrationT™”

max ’

the minimum dimensionless surfactant concentrationT”,.  were

calculated at the dimensionless time step ¢ =0.604, which corresponded to the end of
the simulation time. It is clear from the presented results in Fig 5.13 (D), that the effects
of surfactant dilution is dominant under supercritical capillary numbers, since the
dimensionless length increased and both maximum and minimum surfactant

concentration decreased with the increase in the capillary numbers.
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Fig 5.14 (A) 2D yz view of the surfactant concentration contours is shown for a central
droplet in uniaxial extensional (B) 2D yz view of the surfactant concentration of a droplet
in simple shear flows. The capillary number for the extensional flow is Ca =0.8and the
dimensionless time step y# =0.536. The capillary number for the shear flow is Ca=4.6
and the time step is 7 =1.95 .

No lamellar structure (R, =R,) was observed under the uniaxial extensional flow

conditions, since the compressional components in the xy and the xz planes were
equivalent contrary to the case of the simple shear flow in which the compressional
components were unbalanced. This is also true because the lamellar morphology is flow
and viscosity ratio dependent for cases with finite capillary numbers (Cristini et al.,
2002). Another factor which could potentially help the formation of the lamellar structure
in simple shear flows is due to the nature of surfactant concentration distribution on the
peripheries of a contaminated droplet in the low interface tangential velocity regions of
the flow in the yz planes as shown in Fig 5.14 (B). These regions are characterized by
lower convection effects leading to higher local surfactant concentrations which act to

reduce the droplet interfacial tension, hence locally lowering its capillary number and
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making it more deformable. This does not occur in the uniaxial extensional flow due to
its uniform tangential velocity profile in the indicated region of Fig 5.14 (A).
c. Buoyancy of surfactant-covered droplets in infinite medium
The effect of surfactants on buoyant droplets and bubbles named here as fluid
particles was studied both experimentally (AlImatroushi and Borhan, 2004; Griffith, 1962;
Bel Fdhila and Dwineveld, 1996; Alves et al., 2004) and numerically (Bel Fdhila and
Dwineveld, 1996; Tasoglu, et al., 2008). It was found that surfactants generally reduce
significantly the particles terminal velocity below the classical Hadamard-Rybszynski
prediction in the spherical region of the shape regime; however in other shape regions
the particle retardation due to surfactants is less effective (Tasoglu et al., 2008).
Buoyancy-driven fluid particles are characterized by the following dimensionless

numbers:

Apd” guhp  Udp,
E, =222 M, == Re=—T1 (5.26)
) PO Hy

where E is the Eotvos number, M is the Morton number, and Reis the Reynolds
number, dis the particle diameter, o,is the interfacial tension, gis the acceleration
constant, uis the ambient fluid dynamic viscosity, andU,is the particle terminal

velocity.
The predicted Hadamard-Rybszynski terminal velocity for a spherical fluid
particle rising in infinite medium is given by Clift et al. (2005):

2 +
Uy =288 Ky (5.27)

3 w4, 2u,+3py,

where ais the particle radius and y, is the particle dynamic viscosity.
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The terminal velocity for a rising fluid particle in infinite medium with £, >40and
M, >200 can be estimated analytically through solving the following equation Clift et al.
(2005):

2Re’+ 6Re21+ﬂ—Ej/2M0”2 =0 (5.28)
+17

where 7 = u, /1, is the viscosity ratio.
A domain consisting of 61><61><351[Iu3]was used to investigate the effects of

surfactants on the terminal velocity of a single droplet of radiusa:12[lu], rising in an

infinite medium, in the spherical and the spherical cap regions, respectively. The density

of the suspending fluid wasp, =2|mu/li’], and the droplet density was

p, =1.0| mu/lu’ ]. The relaxation time was set toz=1.0 leading to dynamic viscosities

u#,=0.333and u, =0.1666 for the surrounding fluid and the droplet, respectively. The
periodic condition was applied in all directions. The interfacial tension was set to
o, =10".

Two set of simulations were executed in this section, in which the acceleration
constants were varied to produce the two required shapes. In each set of simulations

the clean and the contaminated droplet terminal velocities were calculated and

measured consecutively. The contaminated droplets cases had their surfactant elasticity

set to E,=0.5leading to a saturation surfactant concentrationI’, =1.5x10”and the

surfactant coverage was set toc,, =0.4 . The Péclet number was set to Pe, =40and the

diffusion coefficient was evaluated based on the following relation:
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(5.29)

where U, is the terminal velocity, ¢is the vertical distance required for the clean droplet

to attain its terminal velocity.
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Fig 5.15 (A) Dimensionless terminal velocities for clean and contaminated buoyant
droplets presented in the spherical region. (B) Dimensionless vertical location of the
droplet mass center for the clean and the contaminated droplets. (C) 3D phase field
contours for the clean droplet, (D) 3D phase field contour for the contaminated droplet.
(E) 2D xz plane view of the surfactant concentration contour for the contaminated

droplet. The dimensionless time step is t/ d/g =43.3. The simulation was executed with
acceleration constantg =2.0x10", Morton number M, =61.7, Eotvos number E =11.5
and Reynolds numberRe =0.34.

The resulting terminal velocities of the clean and the contaminated buoyant

droplets in the spherical shape region were due to acceleration constant

g=2.0x10"[ lu/ts™ |which led to Morton number M, =61.7 , Eotvos numberE, =11.5
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and Reynolds numberRe =0.34 . The normalized terminal velocities by the Hadamard-

Rybszynski terminal velocityU,,, and the normalized mass center vertical locations by
the domain length L, calculated with respect to normalized time by ./d/g are shown in

Fig 5.15.
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Fig 5.16 (A) Dimensionless terminal velocities for clean and contaminated buoyant
droplets presented in the spherical-cap region. (B) Dimensionless vertical location of the
droplet mass center for the clean and the contaminated droplets. (C) 3D phase field
contours for the clean droplet. (D) 3D phase field contour for the contaminated droplet.
(E) 2D view of the surfactant concentration contour for the contaminated droplet. The

dimensionless time step ist/\/d/g:49.07. The simulation was executed with
acceleration constantg=2.0x10", Morton number M, =617, Eotvos number E, =115

and Reynolds numberRe=2.6.

The terminal velocities of the clean and contaminated buoyant droplets in the
spherical-cap shape region were produced by acceleration constant

g=2.0x10"*[ lu/ts” |which yielded Morton number M, =617 , Eotvos numberE, =115
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and Reynolds numberRe=2.6. The normalized terminal velocities by the theoretical

droplet terminal velocityU,, and the normalized mass center vertical locations by the

domain length L , calculated with respect to normalized time by \/d/_gare shown in Fig
5.16.

The results for the terminal velocities and their ratio with respect to the theoretical
values calculated by Eqg. (5.27) and Eq. (5.28) from both set of simulations are

summarized in Table 5.4.

Table 5.4 Comparison of the terminal velocities from the two sets of simulations in the
spherical and spherical-cap regions with their respective theoretical terminal velocities.

Condition Region U, Uz %
Clean spherical 0.00250 0.00247 1.175
Contaminated Spherical 0.0011 0.00247 0.451
Clean Spherical-cap 0.01803 0.01801 1.001
Contaminated  Spherical-cap 0.01641 0.01801 0911

The surfactant concentration phase field contours in Fig 5.15 (E) and Fig 5.16 (E)
and the terminal velocity results from Table 5.4 are clear indications of the proposed
model compliance with the known physical mechanism governing the buoyant droplet
behavior due to the influence of surfactants which was introduced by Frumkin and
Levich (Tasoglu et al., 2008). This mechanism considers the droplet retardation as a
result of the surfactants convection toward the back of the droplet, which in turn creates
Marangoni stress and slows down its surface mobility. This leads to increased drag
force and decreased terminal velocity. The model also shows that the effects of
surfactants on the droplet terminal velocity are more influential in the spherical region

relative to the spherical-cap region.
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CHAPTER 6
SUPPRESSING THE COALESCENCE IN THE LBM: COLLOIDS RHEOLOGY

The multi-component lattice Boltzmann method (LBM) has emerged as a
powerful tool for simulating variety of fluid problems related to the droplet deformation,
brake up and coalescence. However this method is incapable of simulating cases where
neighboring contaminated droplets of the same make-up, amalgamate rather than
coalesce. This problem can be solved in the LBM if different colors are assigned to the
various droplets. The disadvantages of such an approach are: the requirement for more
computational resources (Dupin et al., 2003), and the undermining of the molecular
interaction forces which act between the approaching droplets. The latter is important
for determining the rheological behavior of colloids. Suppressing coalescence in the
LBM enables the model to handle issues of aggregation and disaggregation under
shear stress, and to deal with the rheology of polymers and colloids in a variety of flows
under low and moderate Reynolds numbers. These problems are of fundamental and
practical interest to many industries, since the rheology of such systems plays a
decisive role in their transport properties, physical and thermal qualities. This work aims
at proposing a heuristic LBM scheme suitable for the study of soft colloid rheology. The
advantages of such a model are the simplicity in its implementation, the requirement of
less computational resources, and most importantly is the break-away from the
empirical models, since the effective viscosity of the non-Newtonian fluids is calculated
directly.

6.1 Suppressing the coalescence in the LBM
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Two droplets situated at a close proximity from each other in the multi-
component LBM tend to coalesce. The strength of the coalescence is dependent on the
interfacial tension parameter « which determines the magnitude of the force in Eq.
(2.16) responsible for the creation of a pressure difference between the neighboring
droplets internal fluid and the narrow external fluid layer between them. Eventually the
pressure difference leads to the depletion of the external layer and allows a direct
contact between the droplets, which further destroys the droplets contacting interfaces
and allow them to coalesce.

In the proposed model, the LBM inherent coalescence driving force is used
heuristically to represent the attraction forces between the approaching interfaces and a
counteracting steric repulsion is employed to represent the repulsive forces. The
following formula is proposed for indirectly imposing a repulsive force in the LBM with a

magnitude:
S(x)=c,A(a)a(x) (6.1)
where 1is a dimensionless function of the interfacial tension parameter, which is related

to the local surfactant concentration through Eq. (5.20), c;, :f(cin/cmi") is a nonlinear

m

function of the ratio of the initial surfactant coverage c, and the minimum coverage ¢/

required for suppressing the coalescence in a particular mixture (Lyu et al., 2002). The
application of the repulsive force is accomplished through first identifying an interfacial
node belonging to a leading drop in the computational sweeping direction. A forward

small loop scans whether another interfacial node is within the vicinity of the leading

node and located at a distance(x, - X, )2 +(yl -y, )2 <2. The span of the loop depends
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on whether the leading droplet is approaching the following one in the horizontal or the
vertical direction. For example for the horizontal direction, the loop is given by

x+1<p<x+3,y-2<g<y+3,where xand y are the interface nodes coordinates in the
main loop, pand g are the coordinate of the small loop. The normal to the interface

componentsn,,n, signs are hence after checked. The fulfillment of the condition

sgn(n,,)=sgn(n, ), and or sgn(n,,)=sgn(n,  )ensures that the two nodes belong to

different droplets as shown in Fig 6.1. A set of forces are then applied in the tangential
direction at the locations indicated by pressure inducing in Fig 6.1 as follows:

F(x)=1xS(x)T (6.2)
whereT(ny,—nx) is the unit tangent to the leading droplet interface and n(n,,n,)is the

unit normal vector. The tangential forces are only applicable to the ambient fluid;
therefore only the two diagonally opposite forces shown in blue from Fig 6.1 are active
at any particular time.

The macroscopic force in Eq. (6.2) is applied through the source term of Eq.

(2.11) by the following relation (Halliday et al. 2007):

¢i=a)ikLF~ci (6.3)

2

where the constant is given by &, =1/3. The applied opposite body like forces act to

create a pressure rise in the thin external fluid layer trapped between the two droplets.
The distributed pressure over the area of the local interfaces yields a repulsive force
which prevents the droplets from coalescing, without causing any significant local

droplets deformation.
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Fig 6.1 Two approaching droplets in a hypothetical shear flow, with the required forces
for suppressing the coalescence without altering the droplets shape.

Flow direction

a. Optimizing the force equation for suppressing coalescence

The repulsive force magnitude used in Eq. (6.1) includes a function A(«), which
was needed for controlling the force when the interfacial tension parameter varied
locally without changing the initial surfactant coverage. Due to the surfactant
concentration evolution on the droplet interface, A(a)should affect an automatic
change in the force magnitude corresponding to the changing local interfacial tension.
The tension relation to the local surfactant concentration is governed by the Langmuir

equation of state.

In line with the above reasoning several simulations with uniform interfacial

tension were executed to optimize Eq. (6.1). A 123[Zu2] square lattice unit domain was

used for investigating the required force magnitude needed for suppressing the

coalescence of two droplets with radius R =18[/u]placed initially at a distance of4[/u]
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between their interfaces in a simple shear flow. A shear rate of 9.75x10~° was induced
by the opposite movement of the upper and lower walls. Periodic condition was applied
on the side boundaries. The objective was to find some optimal values for A capable of

effecting droplets total separation during couple thousand of time steps for the value

¢, =1. Three viscosity ratios x,/u, were utilized 0.1, 1, and 10, and the highest values
for Awere taken. A graph was produced and curve fitted to obtain the appropriate

equation for A(«) . The graph is presented in Fig 6.2.
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Fig 6.2 The limiting condition for determining the dimensionless function l(a)and its

curve fit, forc, =1.
Equation (9) was then replaced with the following formula:

S(x)zc; (22.2+Mja (6.4)
a
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by which for valuesc, <1 the force balance allows the occurrence of coalescence
starting by a slow drainage from one droplet into the other for values closer to one,
while the valuesc, >1lead to suppressing the coalescence in the proposed model.

b. Test cases
suppressing the coalescence in a quiescent flow

To demonstrate the capability of the proposed algorithm in suppressing the

coalescence of several droplets in a quiescent flow, a domain consisting of123[lu2],

with a central droplet of radius R=18[/u]and four satellite droplets of radii R =12[/u]
positioned equidistantly from the domain center was used. Periodic conditions were
applied on the four boundaries. The interfacial tension parameter wasa =1.0x10™*. The

two fluids had the same denSitypzl.O[mu/lu2] and the same kinematic viscosity

V= 0.166[lu2ts_1]; hence the droplets were neutrally buoyant in their surrounding fluid.

The selection of these conditions was dictated by a desire to maintain the droplets at a
closed proximity in the absence of any external forces, and monitor their behavior. Very
small value of the Péclet number was used to limit the convection of the surfactants on
the interface of the droplets, which behaved as clean ones.

The phase field contours resulting from the model with the suppression of

coalescence for ¢, =1 compared with the phase field contours of the standard model
¢, =0 are shown in Fig 6.3 for several dimensionless time steps. A characteristic time
step uR/o,was used here where pis the dynamic viscosity and o,is the interfacial

tension. It is evident from Fig 6.3 that the coalescence was suppressed in the case of
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c, =1, contrary to the standard case with ¢, =0where a single drop resulted from the

coalescence of all the droplets in the domain.

Pressure inducing force Separating distance > cut —off
Active repulsive force Inactive repulsive force

(D)

Fig 6.3 (A) Phase field contours for droplets in quiescent flow and ¢, = 0for the various
dimensionless time stepszo/uR . (B) Phase field contours for the droplets with ¢, =1for

the same time steps. (C-D) Pressure contours for the droplets with time varying
interaction forces.

The pressure contours in Fig 6.3 show the continuous attempt by the
coalescence force to bring the droplets to a minimal proximity, counteracted by the
induced repulsive force which helped creating a higher pressure film between the
approaching interfaces, leading to droplet amalgamation instead of coalescence.

Suppressing the coalescence in a dynamic flow
Parabolic flows are interesting in many research areas especially those related to

droplet-based microfluidics. Another area of interest is the hemodynamics, since blood
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circulation in the various vessels is by nature parabolic. The red blood cells (RBC)
behavior in the microvasculature could be studied through modeling the RBC as a
deformable droplet. The disadvantage of such assumption in parabolic flows is related
to the changing strain rate with respect to the droplet location in the domain. Hence
droplets situated in the central region move at higher velocity than those moving closer
to the walls. This diminishes the distance between them and eventually leads to their
collision and coalescence, unless the coalescence is interrupted.
Multiphase parabolic flows are characterized by the channel Reynolds number:

Re, =2 (6.5)
1%

where H is the channel height, U:FHZ/Ivais the magnitude of the average
undisturbed velocity of the flow, and Fis the flow inducing macroscopic force. The
Weber number is another important dimensionless parameter used for analyzing
multiphase flows and is given by:

_2pU’R

Oy

We

(6.6)

where o, is the droplet interfacial tension.

Four droplets with radii R =10[lu]were suspended in a fluid domain consisting of
351x57[ lu’ |. The density of the droplets and the ambient fluid was set to p=1.0, the
viscosity ratio to =1. The interfacial tension parameter wasa =1.0x10"°, and the
kinematic viscosity was v =0.166[Zu2ts*1]. The bounce back was applied on the upper

and lower boundaries to impose a no-slip velocity condition on the walls. Periodic

condition was used for the inlet and the outlet of the domain, respectively. A force

www.manaraa.com



130

F :2.5x10’6[mulu/ts’2]was applied in the horizontal positive direction, and this led to a
Reynolds number Re_, =1.4and Weber numbere=0.33. The characterisitc time was
taken as the inverse of the strain rate 7,;1/4 calculated for a distance equivalent to quarter
of the channel height. The phase field contours from the standard LBM ¢, =0and the

proposed modelc, =6, are shown in Fig 6.4.
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— | o
OO O ) pt=0.14 OO O )
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A)

Fig 6.4 (A) Phase field contours from the standard LBMc, =0 , in which coalescence

occurs instantaneously after collision. (B) Phase field contours from the proposed model
c, =1 in which the coalescence is suppressed. The horizontal velocity profile at

x/H =0.77is superimposed on the phase field contours.

It is obvious from Fig 6.4 (B) that the coalescence was suppressed in the
proposed model, and this has revealed the following observations. The collision
between the two droplets was due to the higher velocity of the central drop. This led to a
change in the trajectories and the velocities of the collided droplets. The first droplet

velocity decreased while it was riding over the second droplet as this was evident from
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the increasing dimensionless distance between the mass centers of the first and the

fourth droplets as the simulation time evolved (d/H), A =1.04versus(d/H )

yt= yt=5.7 =1.61.
The second droplet shear lift was partially undermined, since its mass center

dimensionless distance from the lower wall(y, /H), . =0.26 was smaller than the one

=51

between the third droplet and the upper wall (H—yup/H) ; =0.35at the end of the

j1=5
simulation time.
6.2Rheology
a. Direct calculation of the relative viscosity of colloids

Coaxial viscometers are used for determining the viscosity of fluids by measuring
the torque needed to keep one of their cylinders stationary while the other rotates with
the fluid placed between them. The torque induced on the stationary cylinder is
proportional to the effective viscosity of the tested fluid, while the shear rate is decided
by the rotational speed of the other. Following the same principle of the coaxial
viscometers operation, the schematic in Fig 6.5 shows the propose model’s domain
used for the derivation of the effective viscosity, and the phase field of two non-

coalescing droplets due to the application of the suppression of coalescence algorithm.
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2D domain

F Periodic BC

(A) (B)

Fig 6.5 (A) Schematic of the 2D domain of thickness W =1 used for the derivation of the
effective viscosity. (B) Phase field contours for two droplets in a simple shear flow with
an indication of the used boundary conditions.

Assuming that uis the suspending fluid dynamic viscosity, V the linear velocity

of the walls, H is half the distance between the walls in the horizontal direction, L is the
length of the walls in the vertical direction, then the shearing force per unit width exerted

by the ambient fluid on the moving wall without suspended immiscible droplets is

| 4 | 4
|F| :,u|H—|A. The undisturbed flow velocity in the y direction iSV:%. With suspended

H\\F
droplets the effective viscosity of the whole fluid is 4, =L. The thickness in the z

L]

direction is assumed as unity, thus the area 4 = L and the total shearing force is:

[Fl=2.

ov
Lo =ﬂAyAZZa—x (6.7)
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This leads to the following formula for the effective viscosity:

H AyAz <~ Ov

= o 6.8
Her ”|V| L Ox (6.8)

The relative viscosity is the ratio of the effective viscosity and the viscosity of the

suspending fluid, and it is given for an equidistant grid with spacing Ay = Ax =1by:

H ov
y o=t 59 6.9
el |V|L Z Ox (6.9)

From Eq. (6.8) it is obvious that the effective viscosity is mainly decided by the
change in the local shear rate near the wall, which is the only variable both spatially and
temporally.

To investigate the effects of the suspended droplets on the velocity profile near

the moving walls, several simulations were executed with a domain of 123[ i’ | and two
central droplets of radius R:IS[lu]subjected to a simple shear flow and a shear rate

7=9.75x10"°. Periodic conditions were applied on the upper and lower boundaries. A
densityp:I.O[mu/luz} and a kinematic viscosity v :0.166[Zu2ts’1] were used for both

fluids. Simple shear flows are characterized by the capillary number given by:

Ca=tTR (6.10)

Oy
where g, is the interfacial tension, which was the only variable used in the various cases,

all other variables were left unchanged.
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Near-wall dimensionless velocity
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Fig 6.6 Dimensionless velocity profiles for the wall’'s adjacent nodes for various capillary
numbers at dimensionless time steps 77 =0.39..

The dimensionless vertical velocities for the location adjacent to the moving
wall for four capillary numbers including Ca = (Newtonian) are presented in Fig 6.6
From the graph of Fig 6.6 and Eq. (6.8), it is noticed that the greater the differential
velocity the greater the effective viscosity. For the Newtonian fluid the differential
velocity is a constant in the vertical direction, which is consistent with the theory.
b. Simulation results
Volume fraction effects
The influence of the volume fraction on the relative viscosity of suspensions with
deformable polydispersed spheres was analyzed by Hsueh and Wei (2009). Hsueh and
Wei used a modified Eshelby model to derive the elastic-strain relation for elastic

composites, the elastic-viscous analogy to obtain the effective shear viscosity for the
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suspensions and the Bruggman’s differential model to derive the formula for the
effective viscosity for polydispersed concentrated suspensions with deformable viscous

spheres. The equation used for the calculation of the effective viscosity was given by:

2/5 _ *
¢=1—[”—2j U/ 6.11)
77 775_770

where ¢is the volume fraction, 7"is the effective viscosity, 7,is the viscosity of the
spheres and 7,is the ambient fluid. Hsueh and Wei (2009) provided some additional

formulae to enable a quantitative comparison of their results such as:

. 2, +31, +3¢(1, —11,)
°| 2n, +3n,-24(n, - 7,)

(6.12)

which was similar to the expression derived by Bedeaux et al. (1983), Hashim and
Shtrikman (1963), and this equation is used as the upper bound solution for two phase

flows with small ¢andr, <n,, and as the lower bound solution for 7, >, .

77*=f7{577s—3¢(’70—77s)} (6.13)

51, +2¢(m,~1,)
which was similar to the equation of Hashim and Shtrikman (1963) and this equation is

used as the upper bound solution for incompressible composites with7, >7,, and as the

lower bound solution for 7, <7, .

2/5 25n 4 3/5
¢=1—(’72j (— 7, ”zj (6.14)
n 2.5n,+n

which was equivalent to the equation of Phan-Thien and Pham (1997) for emulsions

with small capillary numbers.
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A domain consisting of 123[/u’ |was used with a droplet radius R =18[/u]for

studying the relative viscosity of a two-phase incompressible suspension with
deformable spherical droplets. Assuming a unity thickness the volume fractions of 2, 4

and 6 suspended droplets were¢=0.135, ¢=0.270and ¢ =0.405, respectively. Since
the majority of the presented equations (14-18) were applicable to suspensions
characterized by a small capillary number, an interfacial tension parametera =4.0x10™*,

and the relaxation times 7, =0.57andz =1.21, yielding a viscosity ratio4,, =10, were
used to maintain a capillary numberCa ~0.01. Shear rate y =9.75x10°° [ts*‘], density
p=l.0[mu/lu2]and c, =1 were used in the simulation. The initial separating distance

between the neighboring droplets wasd,, =4[/u] . This allowed in addition to the

compressional components of the shear flow, the droplets interfaces to come to a
proximity which triggered the short-range interactions.

The relative viscosity calculated by Eq. (6.9) from the proposed model was
compared with the normalized effective viscosity of Eq. (6.11) to Eq. (6.14) and the

results are presented in Fig 6.7 at dimensionless time step y# =0.39.

It is evident from the graphs of Fig 6.7 that the proposed model numerical results were
in excellent agreement with the analytical solution of Hsueh and Wei (2009) and
comparable to Hashim and Shtrikman (1963) lower bound solution. The deviation of the
solution from the results of Phan-Thien and Pham (1997) could be due to the fact that
Eq. (6.14) was derived for droplets which remained spherical in suspensions

characterized by very small capillary numbers.
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Relative viscosity
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Fig 6.7 Effective viscosity of a binary fluid suspension calculated with respect to the
volume fraction of the dispersed phase by Eq. (6.11) to Eq. (6.14) and by the numerical
results of the proposed model Eq. (6.9). The insets are for the phase field contours.

Capillary number effects

The domain, the fluids properties and the flow conditions from subsection 3.4
were used to study the effects of the capillary number on the relative viscosity of a
droplet-based binary mixture. Two volume fractions ¢ =0.270 and ¢ =0.405 were used in
the simulation. The capillary number was changed in the range 0.01 < Ca < 0.4 by varying
the interfacial tension and maintaining the shear rate. The calculation of the relative
viscosity was done at the dimensionless time step y¢ =0.39 . The results are presented in
Fig 6.8.

The graphs of Fig 6.8 show a shear thinning behavior, since the effective

viscosity diminished with the increase of the capillary number.
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Relative viscosity
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Fig 6.8 Effects of the capillary number on the relative viscosity of a binary mixture for
two volume fractions ¢=0.270 and ¢ = 0.405, constant shear rate y =9.75x10°° [ts_l } and

variable interfacial tension at dimensionless time step y =0.39.

Surfactant coverage effects
The effects of the surfactant coverage on the rheology of an immiscible mixture

were studied using droplet volume fractions¢=0.135and¢ =0.270in the domain, fluid

properties and flow conditions which were described in the previous sections. The
Langmuir nonlinear equation of state Eq. (5.20) was used in this simulation with

surfactant elasticity £, = 0.5. The saturation surfactant concentration was calculated and
had a value I', =6.0x10™" [lmol/luz](lattice mole per lattice square). This allowed the

selection of the initial surfactant concentration needed for testing cases in which the

surfactant coverage was varied within the range0< C, <0.4. The surface Péclet number

was set to Pe, =10. The graphs in Fig 6.9 (A) show the role of surfactant coverage on

the rheological behavior of the immiscible mixture, since a reduction in the relative

viscosity is observed with the increase in the surfactant coverage.

www.manaraa.com



1.8

17

16

15

14

13

12

11

139

Relative viscosity
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Fig 6.9 Effects of the surfactant surface coverage on the relative viscosity of a droplet
based immiscible mixture. The capillary number is Ca =0.01and the dimensionless time
step isyr=0.39.

The reason behind such behavior is related to the fact that surfactants in general

in the relative viscosity of the mixture.

reduce the interfacial tension of the droplets, thus making them more deformable. The
other reason has to do with the convection of the surfactant due to the effects of the
interface tangential velocities. This creates Marangoni stress which is highest in the
regions with greater surfactant concentration gradients as indicated in Fig 6.9 (B). The
high Marangoni stress forces the droplets to align in the direction of the flow (Drumright-

Clarke, 2002), thus diminishing their resistance to the flow, which results in a reduction
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CHAPTER 7
NON-UNIFORM INTERFACIAL TENSION LBM FOR RBC MODELING

This study aims at analyzing the red blood cell (RBC) deformation and velocity
while streaming through venules and through capillaries whose diameters are smaller
than the RBC size. The characteristics of the RBC shape change and velocity can
potentially help in diagnosing diseases. In this work the RBC is considered as a
surfactant covered droplet. This is justified by the fact that the cell membrane liquefies
under pressure in the capillaries, and this allows the marginalization of its mechanical
properties. The RBC membrane is in fact a macro-colloid containing lipid surfactant.
When liquefied, it can be considered as a droplet of immiscible hemoglobin covered
with lipid surfactant in a plasma surrounding. The local gradient in the surface tension
due to non-uniform local interface surfactant distribution is neglected here, and a non-
uniform zonal averaged value of surface tension representative of the surfactant bulk
zonal concentration is rather implemented. The interplay between the surface tension
geometry and the hydrodynamic conditions determines the droplet shape by affecting a
change in its Weber number, and influences its velocity. The Gunstensen lattice
Boltzmann model for immiscible fluids is used here since it provides independent
adjustment of the local surface tension, and allows the use of fluids with viscosity
contrast. The proposed concept was used to investigate the dynamic shape change of
the RBC while flowing through the microvasculature, and to explore the Fahraeus, and
the Fahraeus-Lindqvist effects.

7.1 The heuristic approach for surfactant-covered droplets
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The motivation for the use of zonal averaged non-uniform surface tension
method stems from the fact that the lipid membrane liquefies at pressure greater than
29 (dyne/cm) as explained by Keller et al. (1998), a condition sought to prevail in the
microvasculature. Thus the liquefied lipid bilayer is expected to allow its surfactant
molecules to shift in the direction opposite to the flow direction mainly due to convection
which is dependent on the tangential surface velocities. Since the number of lipid
molecules is constant on the periphery of the RBC and since these molecules are finite
by size, the shift comes to a halt when regions of higher surfactant concentration reach
their saturation point. Another important factor which prevents any further build-up of the
concentration is the Marangoni stress which is expressed as follows:

Vo --%.yr (7.1)
ar

where V _is a surface gradient, o,is the local surface tension, T is the local surfactant
concentration. It is convenient to relate the surface tension with the surfactant
concentration by the Langmuir surface equation of state expressed as follows:

o, =0,+RIT, In(1-T/T,) (7.2)
where o,is the surface tension of a clean surface, I' is the saturated surfactant
surface concentration, Ris the gas constant and Tis the temperature in Kelvin.

Equation (7.1) and Eq. (7.2) yield the following surface tension derivative with respect to

the surfactant concentration (Hu and Lips, 2003):

do, _RT
or  (1-1/r,) (7.3)
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Equation (7.3) indicates that an increase in the surfactant surface concentration leads to
an increase in the Marangoni stress, which in turn slows the tangential surface velocity
and hampers any further convection of surfactant towards the regions of higher
concentration. This process prevents the presence of regions with extremely low
surface tension and limits the area generation beside the limitations imposed by the
contraction of the regions with lower surfactant due to higher surface tension. Eq. (7.2)
can be written in the following dimensionless form:

JS

=1+E,In1-T/T,) (7.4)

Oy
where E,=RTT /o, is the surfactant elasticity which determines the strength of the
surfactant effect on the interfacial tension.

In this model an estimated value of £, =0.2was used. A reasonable range for the
bulk surfactant concentration ratio of 0.3<T/I", <0.7 was considered in Eq. (7.4) based
on a study by Hu and Lips (2003) for some polymer blends. An initial surface tension
parameter «,from Eq. (2.16) was set such that the droplet deformation index DI ~ L/D,
was equal to an experimental RBC index, where L,D were the length and the width of
the RBC (Hong Jeon et al., 2006). An initial surfactant concentration ratio T',/T", =0.7

was used with the assumption that the lipid bilayer cannot be fully saturated throughout
the RBC membrane as stated by Braasch (1971) regarding the radio-autography
results. For simplicity the interface of the droplet was then divided into two adjustable
regions: frontal region with lower surfactant concentration and backside region with
higher concentration as shown in Fig 7.1, such that the initial total surfactant mass was

conserved on the droplet interface:
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I T,
N, +—rf N, ===N,
” (7.5)

A
—

igrb
F o0

T
where N,,N,,N, are the number of interfacial nodes in the back, front and total regions

respectively.T" ,[",,T";are the frontal, backside and initial surfactant concentration. The

zonal surface tension parameters of the model had to obey the following equation:

% % Z 14 E,In(1-T,JT,) (7.6)
&, O

where k = f,brefer to the frontal and backside regions respectively.

(A)

%mnEolx(l—rk/rm)
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8 L 5 L =
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Fig 7.1 lllustrates the adjustable zonal division of the interface with regions of higher
(frontal) and lower (backside) interfacial tension. The darker contours show greater
surface tension parameter a« from Eq. (2.16). (A) Shows homogeneous « value, (B)
quarter of the interface had lower « value; (C) the interface was shared equally
between high and low values of « .

A viscosity ratio 4, /u, =7was used throughout this model which is an approximation of

the ratio of hemoglobin to plasma. Preferential wetting was given to the suspending fluid

which was treated as hydrophilic, contrary to the droplets which were hydrophobic.
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7.2 Simulation results and discussion
Surface Tension Effects on a Single File Flow RBCs Shape and Velocity
To calibrate the model data were extracted from the experimental work of Hong

Jeong et al. (2006) which indicated RBC deformation index DI =1.55 and velocity

V =1.8mm/sinside the capillary of a rat mesentery. Assuming that blood density at

normal temperature is p = l.OSg/cm3 as was stated by Nakano et al. (2005) and that the
velocity of the RBCs is representative of the average blood velocity in the capillary, then
the estimated blood viscosity is x=2.35c¢Pand the average Reynolds number is
Re ~ 0.0055 for a random capillary size.

A domain of 19x450 lattice sites was selected for the simulation of four droplets
where all variables were measured in lattice units. The relaxation times were chosen as

r,=0.602;7, =1.219;7,, =0.908 for the suspending, the suspended fluid and the interface

as per Eq. (2.15), respectively. This produced the right viscosity ratio between the two

fluids and an apparent kinetic viscosity v, ~0.08 which was calculated based on the

density fraction of the red and blue fluids. A density p=1.05was used for both fluids in

the model. The average velocity of the bulk fluid was calculated using the known

experimental value of the Reynolds numberRe =V, 2k/v,  ~0.0055, where h was half

app

the channel width. This led to an average velocity ¥, ~2.5x107from which the source

term was derived as follows (Sukop and Thorne, 2006):

20v.V
F=Plale 55,00 (7.7)

h2
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The source term in Eq. (2.20) produced the right undisturbed average velocity of the

bulk fluid, but since the droplets caused little resistance to the flow, an increase of the

source term was deemed necessary, thus a value of F=7.8x10"was found by trial to
produce the needed average velocity. To maintain a deformation index DI ~1.55 and

the calculated RBC average velocity, the following value for the surface parameter was

found by trialz, ~1.5x10"as shown in Fig 7.2 (A). Periodic boundary conditions were

applied at the inlet and outlet boundaries, and bounce-back conditions at the upper and

lower walls. After determining the optimum surface tension parametera,, the zonal

averaged non-uniform method with values calculated by Eq. (7.5) and Eq. (7.6) was
used in two cases where a lower surface tension parameter value covered about
quarter of the interface in one case and half of the interface in the other. The influence
of the non-uniform surface tension was more noticeable on the droplets shape through
the appearance of tails due to the lower surface tension at the backside and the
influence of the shear stresses which were higher near the walls. A velocity drop was
also witnessed in case (B) and case (C). This could be due to a relatively higher surface
tension parameter resulting from Eq. (26) and Eq. (7.6) in the frontal region which led to
a slightly lower droplet average velocity. In the subsequent cases the surfactant

concentration distribution of case (B) will be used as a reference.
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Fig 7.2 Phase field and horizontal velocity contours for four droplets streaming in a
narrow vessel with homogeneous surface tension parameter (A), and with zonal
averaged non-isotropic surface tension parameter whose values were explained in Fig.
7.1 for insets (B) and (C).

More simulations were performed using the same domain and flow conditions,
but the surface tension parametero, was varied in each run. The intention was to

investigate the range of the surface tension parameters responsible for slowing down
the droplet to about 20% - 0% of its nominal velocity and see its effects of the RBC
shape.

The mean velocity of the RBC was calculated using the following equation:

%=%ﬂmw@ (7.8)

www.manaraa.com



147

where A is the total area of the RBCs and the deformation index was computed by the
following formula:

pr={=%
(a+b)

(7.9)

where a,bare the major and minor axis of the droplets respectively. Fig 7.3 shows the
phase field and velocity contours for four runs where the surface tension parameter was

varied 1.5x107 < a, <1.05x10™° by an equal step.

50 100 150 200 250 300 350 400 450

50 100 150 200 250 300 350 400 450

Fig 7.3 Phase field contours and their respective horizontal velocity contours for surface
tension parameters1.5x107 < ¢, <1.05x10° by a step of 5, =3.0x107".
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The normalized average velocities of the four cases in which the reference case

velocity (A) was used in the denominator and the DI were plotted in Fig 7.4. A general

trend of increasing velocity and DI is observed with decreasing surface tension

parameter. It can be seen from Fig 7.4 that the surface tension parameter had to be

raised seven times with respect to the reference parameter in order to reduce the

droplet velocity up to 20% of its nominal value and the DI by 50% .

Driessen et al. (1980) tested the effect of injecting hardened RBCs inside the rat

mesentery. A decrease of the RBC velocity up to (71.1+£19.1)%was observed when

RBCs treated with 0.5mmol.L"' diamide were placed in the rat capillaries during the

exchange period and to(8.3i15.1)%during the hypo-tension period. When 1.5mmol.L

diamide was used the velocity dropped to (86+24)% during the exchange period and to

(2.1+6.1) % during the hypo-tension period.
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Fig 7.4 Droplet velocity and DI dependence on the surface tension parameter.
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It is noticed from Fig 7.4 that for 4.5x107 < ¢, <7.5x10”" the normalized velocity

curve had a gentle slope and the decrease in velocity was up t065% , which agrees
qualitatively with the experimental trend. This could pave the way for the potential of
qualitatively correlating the model results with some experimental data such as the
results of Driessen et al. (1980) if more details were available.

RBC Deformability

The role of the endothelial surface layer on the RBC deformability, flow resistivity,
and lower tube hematocrit, was studied by (Secomb et al., 1998; Secomb et al., 2001).
Special attention was given to the exclusion of the RBC from the capillary walls. The
endothelial cell creates a higher level of flow resistance in the microvasculature
compared to glass tubes used in in-vitro experiments.

A domain consisting of 160x24 lattice units was used to model single RBC
flowing in a capillary of 6um diameter. The results of this simulation were expressed in
physical values to enable a comparison with the results of Secomb et al. (2001). The
reference shape, before applying the non-uniform surface tension method, was
assumed to be a sphere of 6 um diameter as stated by Braasch (1971). The source
term was varied in order to achieve droplet velocities ranging from 500um/s to
3,700um/ s using Eq. (28). In the proposed model velocities below 500um /s were not
used. This was to avoid lattice pinning, which originates from the Gunstensen method
for the segregation step at very low velocities (D’Ortona et al., 1995). The surface
tension parameters used in this simulation were the same as the reference case and
were based on values derived from Eq. (7.5) and Eq. (7.6). The selection ensured a

good control over the shape of the RBC. The gap width between the RBC and the wall
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was measured in the same manner used by Secomb et al. (1998). The gap was
considered as the average width along the whole length of the cell, where the angle
between the tangent to the curvature of the cell and the vessel wall was less than 11

degrees as shown in Fig 7.5.

10um ... Oum
Rejected _—-.—,7;‘?1

Fig 7.5 Criteria for accepting or rejecting the gap measurement along the length of the
RBC used for calculating the average width. For #<11 degree the record is taken
otherwise it is rejected.

Fig 7.6 shows the droplet-wall gap width variation with respect to changing the
velocity. The results obtained from the proposed model were compared to the results of
Secomb et al. (2001). The upper higher graph represents the model in which Secomb
considered the role of the endothelial surface layer, and the lower graph corresponded
to the model in which he disregarded that role. It is evident that the bounce-back
condition in the present model did not fully recover the effects of the endothelial surface
layer on the RBC exclusion from the wall, but it rather produced reasonable results.

The droplet shape change due to the increase in its velocity is shown in Fig 7.7.
This was done by measuring the deformation index as per Eq. (7.9). The same graph
shows also the droplet steady state length and gap. A trend of increasing gap, length,

and Dl is associated with an increase in the droplet velocity.
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Gap width comparison
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Fig 7.6 Droplet-wall gap width comparison of the proposed model with the data
generated from Secomb et al. (2001). (Glycocalyx indicates that the endothelial cell
layer was considered in Secomb’s model and no glycocalyx indicates otherwise).

In the proposed model a relatively higher velocity was required to achieve a
droplet elongation to about 8um as shown in Fig 7.7. This was due to a smaller initial
reference shape. The elongation of the droplet was compensated by a greater droplet-

wall gap width.
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Fig 7.7 Droplet-wall gap, DI, and length calculate with respect to the droplet velocity.

It is reasonable to assume that the deformation was caused mainly by the higher

shear stress effects.

viscous stress near the walls since in the present model the droplet was not allowed to
wet the walls. In a straight section of the microvasculature, the RBC tends to form a
bullet shape when flowing at its normal velocity as shown in Fig 7.8. This is due to the
Poiseuille nature of the flow, which enables the forehead of the RBC to have higher
momentum, meanwhile lower momentum prevails at the upper and lower sides because
of the retardation caused by the viscous stresses. This results in an exclusion of the
RBC from the walls and leads to a considerable reduction of the viscous stresses, and

thus to the vanishing of its parachute since the surface tension effects overcame the
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Fig 7.8 Dependence of the wall-droplet gap width on the velocity. The gap increased

with increasing the velocity, and the droplet elongated while distancing itself from the
wall.

The Fahraeus Effect
The Fahraeus effect describes a blood related phenomenon which occurs in

small tubes. It was proven experimentally by Fahraeus that the tube hematocrit HT is

less than the discharge hematocrit HD. This happens when the RBC mean velocity V.

rbc

is higher than the mean blood velocity’. The Fahraeus effect is described by the

following equation (Sun and Munn, 2005):

H_D VLbc (7.10)

Results from the simulations of section 3.3, were revisited to analyze the effect of
the RBC velocity on the tube hematocrit and was shown in Fig 7.9. A comparison with
the results of Secomb et al. (2001) showed that the model output was closer to

Secomb’s no glycocalyx model, which disregarded the endothelial surface layer effects.

The reason for this behavior could be due to the sensitivity of the present model to the
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near-wall viscous effects. This resulted in a relatively lower droplet mean velocity, hence
a higher value of the Fahraeus effect. With the increase in velocity, the droplet was
excluded from the wall. This reduced the shear stresses and the value of the Fahraeus

effect.

Comparison of the Fahraeus effect
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Fig 7.9 Decrease in tube hematocrit with respect to discharged hematocrit due to an
increase in RBC velocity, and a comparison with Secomb results (Secomb et al., 2001).

To check the influence of varying the blood hematocrit in a narrow vessel on the
Fahraeus effect, a 285x41 lattice sites were used for three runs with different number of
droplets placed in the domain as shown in Fig 7.10. This was to simulate 20 ym

diameter tube experiment, whose results were presented by Sun and Munn (2005).
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Fig 7.10 Left-phase field contours and horizontal velocity profile for 285x41 lattice sites
and 0.17, 0.25 and 0.33 discharge hematocrit. Right-horizontal velocity profile
measured at the middle of the domain.

Periodic conditions were applied at the inlet and outlet boundaries and mixed
boundary condition at the top and bottom walls. This is a special boundary condition
consisting of a combination of the full bounce-back, and the specular-reflection
boundary condition. More details on this boundary condition are provided by Shirani and
Jafari (2007). The mixed boundary condition was used because the results of Sun and
Munn (2005) were compared with in vitro experimental data. The results of the three
simulations which were performed with discharge hematocrit 0.17, 0.25 and 0.33,

respectively, are presented in Fig 7.11. The average Reynolds number was Re = 0.025
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which is a representative value for blood flow in the venules. The mean droplet velocity
was calculated by Eq. (7.8). The Fahraeus effect was evaluated using Eq. (7.10). A

reflection coefficient of 0.7 was used for this simulation.

Comparison of the Fahrasus effect
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a1 B Munneta

HT/Ho

0 1 o2 n3a 04

Hematocrit
Fig 7.11 The graph represents the dependence of the Fahraeus effect on the discharge
hematocrit. Comparison of the model results wi th the results of Sun and Munn (2005).
The Fahraeus-Lindqvist Effect

The Fahraeus-Lindqvist effect predicts a decrease in the apparent viscosity of
blood in a long narrow vessel of diameter ranging from 7 um to 200 ym. This is due to
the presence of a cell- free layer, referred to as plasma-skimming layer near the wall. In
the absence of gravitational effects and under shear or parabolic flow it is known that
when neutrally buoyant droplets (Legendre and Magnaudet, 1998) or vesicles (Seifert,
1999) are in proximity to a channel walls, they tend to migrate towards the center due to

a hydrodynamic shear lift.
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With 16 lattice units for the RBC diameter, a 57x240 lattice squares domain was
used to investigate the model capability of reproducing a plasma-skimming layer based
on the shear lift phenomenon. Eight out of twelve droplets were put initially on the walls.
A Reynolds numberRe ~ 0.05was used for this simulation. Periodic conditions were
applied at the inlet and outlet boundaries to create a resemblance of a long tube and
bounce-back at the upper and lower walls to impose zero velocity on the wall as

described in the theory (Chandran et al., 2006).

Time step 10* Time step 7.20x10° Time atep 2.14x10°

W—mm Fhase feld Phase fisld e FPhase field uﬂ
{ - i =, - i 3 g o .
Time step 4.15x108 Time step 7.40x108 Time step 2.52x10%
—————hase field ————— Phase fizld Phass fisld u‘
m i Prezsure | i Prezsure ﬂn Preasurs

—_—_

Fig 7.12 Phase field contours and pressure contours for six different time steps. The
pressure contours show a pressure difference between regions below and above the
wall-side droplets. The phase field contours show the axial migration of the near-wall
droplets.

This simulation clearly demonstrated that the near-wall droplets tilted due to the

viscous effects of the surrounding fluid, and migrated toward the center as shown in the
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phase field contour insets of Fig 7.12. The pressure contour insets of Fig 7.12 show a
consistent pressure difference in the regions below and the regions above the droplets.
This pressure difference, the droplet tilt, and its elongation are the major contributors to
the creation of the lift force.

Hydrodynamic lift

i0.22

i0.18

016 »

¥ /H

Q.14

012 & Lift

0.1

ty

Fig 7.13 Graph representing the axial migration of the near-walls droplets. Normalized
displacement of the droplet mass center versus the corresponding time step multiplied
by the shear rate of the mid location between the wall and the center of the channel.

To trace the near-wall droplets mass center displacement in the vertical direction
due to the shear lift, the normalized y coordinate by the channel width Y/H was plotted

versus dimensionless time steps which were defined as ¢ty where rwas the time in
lattice units, and for convenience the shear strain rate was taken with respect to the

height H /4 since in parabolic flows this rate varies with the coordinate of the location of
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interest in the vertical direction. This led to the following equation for the shear strain

rate:

(7.11)

where U is the undisturbed centerline fluid input velocity. The droplets reached an

equilibrium position at21% of the channel height. The result presented in Fig 7.13 is
indicative of the joint influence of the shear lift and the effect of the higher velocity
droplets placed in the center of the channel, which halted the axial migration when the

droplets came into close proximity.
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CHAPTER 10

CONCLUSION AND RECOMMENDATIONS

10.1 Conclusion

This research introduced three novel modules to the lattice Boltzmann method:
the migrating multi-block which improves the interface resolution and accelerates the
LBM solution, the hybrid module which incorporates the surfactants effects on the
interface of the mixture and the suppression of coalescence module which facilitates the
study of the rheology of emulsions. The combination of these modules provides a
convenient tool for the study of the colloidal morphology and rheology. A heuristic
surfactant-covered droplet approach was also used for studying the red blood cell
deformability in the microvasculature. Summary of each of the studies is presented
below.
a. Migrating multi-block schemes

The migrating multi-block concept was introduced and implemented on the single
phase, multiphase and multi-component LBM models. The module was tested on
asymmetrically placed cylinder in a channel in 2D geometry, which results for the
Strouhal number, the lift and the drag coefficients were in good agreement with
benchmark published data. The shear lift of a neutrally buoyant droplet was studied.
The analysis of the equilibrium distance from the wall matched well with other numerical
results. The buoyancy of bubbles in 3D domains was investigated. The model results for
the terminal velocities and bubble shapes were in good agreement with some analytical

and experimental results. Orifice flow cavitations were investigated using the multiphase
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single component model in 2D domain. The results were fairly good for low Reynolds
numbers. The sedimentation and settling of a droplet on a horizontal wall was studied
using the migrating multi-block in 3D geometries. Good agreement was found in
comparison with some analytical solutions.
b. Hybrid LBM

A hybrid LBM-finite difference model was developed using the Gunstensen
model for the calculation of the velocity field, pressure and to track the fluid-fluid
interface, while the hopscotch finite difference scheme was used to solve the surfactant
convection-diffusion equation. The coupling between the two modules was through the
LBM velocity field, the interface curvature and the surfactant equation of state. The
model was used to study the effects of the surfactant coverage, surfactant elasticity, the
surface Péclet number and the capillary number on the morphology of a single droplet
in simple shear and in uniaxial extensional flows, respectively. The effects of surfactants
on the retardation of the buoyant surfactant-covered droplet were explored. Good
qualitative results were found with respect to some numerical and analytical solutions.
c. Suppressing coalescence in the LBM and rheology

The suppression of coalescence in the multi-component LBM was achieved by
perturbing the terminal nodes of the separating thin layer between two approaching
droplets interface. The perturbation of the layer created enough pressure to stop the
destruction of the neighboring interfaces and halted the droplets coalescence. The
module was needed for the introduction of the effects of the inter-particle interaction
forces in the study of the colloidal rheology. The model relative viscosity results were in

good agreement with some analytical solutions. The effect of the increase in the
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capillary number on the relative viscosity was characterized by a thinning behavior. The
surfactant coverage increase lowered the relative viscosity of the mixture.
d. Non-uniform interfacial tension LBM for RBC modeling

The red blood cell was modeled as a surfactant-covered droplet based on the
assumption that the lipid bilayer liquefies under pressure in small vessels, hence the
mechanical properties of the cytoskeleton were neglected. The effects of the interfacial
tension on the RBC-droplet velocity were studied in small vessels. A trend of decreasing
velocity was noticed with the increase in the interfacial tension. The RBC deformation
and exclusion from the wall was investigated. The results were in good agreement with
other published findings. The model reproduced successfully the Fahraeus and the
Fahraeus-Lindqvist effects, respectively.
10.2 Recommendations for future works

This work produced a numerical tool for the study of liquid-liquid colloids
morphology and rheology by using an improved Lattice Boltzmann method. The
following works are recommended for future developments.

e Combining the migrating multi-block, with the surfactant module for future
applications in 3D geometries with the presence of solid boundaries since many
practical problems involve such boundaries.

e The suppression of coalescence module should be extended to 3D geometries to
improve the quality of the results on rheology.

o After successfully using the heuristic droplet approach in chapter 7, the full model
should be used to investigate the blood flow in the microvasculature in 3D geometry.

The effects of surfactant elasticity and the Péclet number on the velocity of the droplet
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in cylindrical domain should be correlated with the in vivo rigidified RBCs velocity from
some experimental data. The model could then be potentially used to provide a

diagnostic tool for assessing blood related disease mechanisms such as those

mentioned in chapter 2.c.
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APPENDIX
Incorporating the surfactant effects into the Gunstensen LBM
The surfactant time-dependent convection-diffusion equation is given by the

following:

S+ Ve (usI) + kT, = DA+ (A1)

chem qf
For insoluble, non-diffusing surfactant convected on the interface by the flow only and in

the absence of chemical reaction, the time-dependent convection-diffusion equation

takes the following form:

X V. (usl) + kTuy, =0 (A2)

For 2D domain

The local mean curvature is calculated by £k =V -n

a
k=V.n=U—-nn).V.n=V.n—nnV).n= anx +ﬂ— (nxi +nyj) (nxaa—x+
on on on on
ny 5 ) (‘I’lxl +ny]) ——x+ [(‘I’lxl +ny]) (nx P i+ n, P —2j +nya—l +nya—])]
ony | O9ny (2 0ny on oy L 29y _ 0 g 2y My s oy
T oy (n + n,ny, —= 3y =+ n,n, —= oty ay) = 1-n2)+ 3y (1 ny)
on ony 2 0n on on ony
meny (G2 4+ 52) = ng G2+ S —neny (T4 52) (A3)
The normal velocity is given by u, =u-n
Up = UMy + UyNy, (A4)

The tangential velocity is calculated by u, = (I —nn)-u
us= (I —nn).u=u—nnu) = (udi+ uyj) — (nyi+ nyj)(nxux + nyuy) = (ux — n2u, —

nyny iy )i + (uy — niuy, — nynyu,)j = ugyl + Ugyj (A5)
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The term V (u,I) is resolved by the product rule as follows:
V. (ul) = ['(Vyug) + ug. VI (AB)

V.r =Vl —n(n.Vl) = [(a_i _]) (nxi + ny]) (nxg_i'*' ny g;)] - [(Zil + Z_;]) B

5 or or or

el ¥ ey ol = (w5 mmany )1 (55— mamy 35)1
(n o —i+n nyayl+nn ]+n =W MMy, [+ Mo, ~ My 50)) (A7)

0 = Gt (10~ 815 e, ) 5 (1= 555, ) )

ar ar

ar
Sugy —nyn usx) = Usy o~ +usy£ (A8)

yu

_ 2 ar
ug,. VoI = (usx — Ny Ugy — nxnyusy) P (usy -n

sy = n2(u, — n2uy, — nynyuy,) + nyny(uy, — nu

Us ny

— 2
ng Ugy + nyn,, y — nxnyux) = NUy —

NYU, — NINLUy, + NNy Uy, — NyNGUy, — NENGU,

nZ ug, + nynyug, = [n2u, —n2(1 — n?)u, — n2n2u,] + nyen, (u, — n2u, —niu,) =0
x Usx xlylsy = [HxUyx x y JUx x My Uy x My \ Uy xUy yUy ) =
2 _ — 2 a2 _ _ 2 _ — 12 —

niug, — nenyus, = n2(u, — nZu, — nynyu,) + neny, (u, — nZuy, — nynyuy) = niu,

NJUy — NyNJUy + NNy Uy — N3N, U, — NENSU,,

2 — [p2 2 2 2.2 2 2 —
Ny Usy + NNy Ugye = [Myuy, — nj(1 — ndu, — ngnjyu, ] + nxny(ux — NyUy — nxux) =0

Veoug = V.ug —n(n. V). ug ag;"+ausy (ny l+ny])( +ny%).(usxi+usyj) =

a;%_l_a:%_ (nxaa i+ n,my, - 9 i +nxnyaa—xj + nf,%j) (Ugyi + Ugy)) = a”;x a:%_

Py T = Ty T = T g T =y (T4 ) (A9)
Ve.(ul')=T [n2 Qutsx | n2 a;;y —nyn, (aaL;" 1 a:%)] + usx(;—i + ugy, Z—JF/ (A10)

The final form of the surfactant convection-diffusion equation is given by:

or . or ar
Ve.(ugl’) + kT'u, = =Tt Ut u Y3y +F[

2 ausx 2 0 ”Sy ausx ausy
6y ) ay ax

(kuxn, + kuyny)] =0 (A11)
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In short notation the convection-diffusion equation reads as:

ar ar or _
St Clo+C2-+C3r =0 (A12)

where the coefficients are calculated by:

C1 = Ugy

C; = uUgy (A13)
2 Ou 2 Ousy Ousy | Ousy

G =mny asx + ny ay NxNy ( a;x + o ) + (kuxnx + kuyny)

The explicit part of the Hopscotch scheme is by:
C C
Fi,njﬂ = ?1 (Fiﬁl,j - 1:7111) + ?2(17}—1 - Fz?ﬂ) + (1 - C3)I—irjl (A14)

The implicit part of Hopscotch scheme is by:

1 _ 1 C +1 +1 C2 +1 +1
Ly = e (1;-3. e e A e] e L By Fi’rfl'“]) (A19)

When diffusion is to be considered the following equation should be added to the right

hand side of the time-dependent convection-diffusion equation.

ar ory . ar ary .
I = (155 = ey 55) i (2 55 = many 55 (A16)
2 ,0r ary. ( ,or ary
o = = (15 5 o g ) o (855 = e )

d or or a aor or d
Vil =n3 —( 2 —— —) 2—(n2——nn —)—nn [—(n ——n,n —)
S le ax le dx nxny ady +nx ady X oy XY ox XYV oy \'Y ox XY oy +

a%r a%r ar ar a%r
Vr=nt— —nn3—+nt——n3n —n,nd—+n2n2—-—nin
S Y 9x2 XY axoy T X 9y? XY dyox XY dyox + Y ay2 XY axdy
2
MMy 0x2

VAl = (n} +n2n2)az—r+ (nk +n2n2)az—r—2(n3n + n,nd) o
s y xMy) 5.2 x x"'y ) 552 xTly x"'y) oxay
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VAr =nZ(nZ + nx) oL 4 n2(nZ + ny) —2n,n,(n2 + ny) axay
2m 9 0%r 2 02r a%r
\%F—nyﬁ+nxﬁ—2nxnym (A17)

In short notation the convection-diffusion equation reads as follows:

GG Gl G G+ Cogan =0 (A18)
C, = —n3Ds = (nf — 1)Ds

Cs = —nzDs = (n3 — 1)Ds (A19)
Ce = 2nyny,Ds

The explicit equation is as follows:

c
Fnﬂ - (Fn -1 +2 ( iice — L) + (1= C3 + 2C, + 2C5)IT — C4(Gﬁl,j+521,j) -

ceé6
Co(Iher + I-1) + 5 (Go1 = Rlhea + Ty — [215-1) (A20)

The implicit equation is as follows:

+1 _ 1 +1 +1 +1 +1 +1 +1
T = v (T + SRR — ] + S0yt - ] - alr) + nnd)] -
C[Ith + 1] + I — L + T2 — 029 ]) (A21)

The interfacial tension surface gradient is calculated as follows:

l7sa=[(Zii+§;')—(nxi+nyj)(nxg—i+nyg—;)]=[(Z—Zi+g—;j) (nxg l+nxnygal+
nxnya ]+n32,z; ')]z(Z—Z—n,ZCZU n,n yz )l-l-( g—y—nx Ty 20j (A22)

For 3D domain

on, ~ 0on an . ] 3]
k=V.n=U—-nn).V.n=V.n— n(nV)n—a—+ayy+ = (nxl+ny]+nzk)(nxa+

nya +n, o ) (nyi +nyj + nyk)
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anx on, ony

__on ony  dn, . : om
k—a—§+g+§—[(nxl+ny1 # ). (e G T2 e Sk, T
anz aﬂ aﬂ ony
]+Tl k+ Zl+nzazj+nlazk)]

ony ny . ony ( 2 0Ny on ony ony 2 0Ny ony
k= & T y+ p ny +nxnya +nyn, — =+ nen,y, ax+n3’ay+n3’nz Pyl

an an, 2 0Ny
n,n,— Fw +nynz 2y + nz az)

ony ony 2 on, 2 ony, |, Ony on,  0ng
B 4 521 05) 4 Dy () e (4 5) -
k dx ( Tlx) + ay ( le) + 0z ( le) nxny ay ax NNz 0z + dx

on aon
Y4z
nynz ( 0z + Oy)

_ 2 2 y on any an on
k= (ny +n ) + n2+n ) + (nx + ny) — NNy, (a_; E) —n,n, (a_zx + axz) —
nyn, (S22 + o (A23)

The normal velocity is given by:

Up = UMy + UyNy, + UM, (A24)
The tangential velocity is given by:

us=U—-—nn).u=u—nnu) = (uxi +u,j + uzk) — (nxi +n,j+ nzk)(nxux +nyu, +
nuy) = (uy — nfu, — nenyuy, — nenu, )i + (uy, — nynu, — n2uy, — nyn,u,)j +

(u, — Ny, — Ny, — N2Uy )k = Ugyd + Ugyj + Uk (A25)
By the product rule the following term is solved as follows:

Ve.(usl’) =T (Ve ug) + ug. VI’

or. . or. ar . . ar r
Vol = I =n(n.71) = (500 + 30 +501) = (nd + nyj + 1 k) (e 55+ 1y 55+, 5)
—(or; or. or,\ _ 200, 9 or. _ 200, or
\751"—(axl+ay]+azk) My ool = NyMy == = NNy — 1 = NNy —— ] — My =] — nyn, —
or
Ny k—nyn,—k— Z;k
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ar r ary . ar ar ary .
_ N or or _2\or or or
v.r = [(1 ng) 5 xMy 55~ Ml az] i+ [(1 ny) 5y Ty gy ~ My 6z]] +
ar ar ar
1 —n? ——nn——nn—]k A26
(1 -n) T —nn, 5T —nym, 2 (A26)
. . . ar ary . ar
us. V,I = (usxl + Ugyj + uSZ]).{[(l x) Nty - nana—] i+ [(1 n prei
ary . o O or ar
n,n n,— 1 n——nn——nn—k}
x"y Zaz]]+[( Z)az %'z 5y yzay
T
2 or 2
(usx = Ny Ugy — NyNy Uy — nxnzusz) a + (usy — NyNyUsy — NyUgy — Ny N, usz) + (usz -
ar
2
NzNxUsy — NzNyUgy — nzusz) 3z (A27)
nzug, + n,ny U, +n,n,uU., = niu, —niu, —nin,u, —nin,u, + n,n,u, — niniu, —
x Ysx xtyUsy xlzUsz — TlxyUx x Yx x Ity Uy xtzUz x Mty Uy x by Ux
n.n3u, —n.nn,u, + n,n,u, — niniu, — n,n,nuU, — N, NU
x Ity Ly xtylizUz xItzUz xItz Ux xItyltz Uy xTtzUz
2 2 2.2 2.2
Ny Usy + MMy Uy + Ny U, = [NEU, — nx(l — nz)ux — NENHU, — NENZU| +
2 2 2 2 2 2 _
nxny(uy —NngUy, —NjU, — N uy) + nxnz(uz — nzu; —NjuU, — nyuz) =0
NyNylsy + N3Usy + NN U, = 0
N Ny lgy + NNy U, + NJUg, = 0

_ _ ausx ausy Ousz . . 0 7]
Veugs =V.uy —n(n.V).ug = 5 3y = (nyi +nyj +n,k) nx£+ny6y +
d . .
n;o- .(usxl + ugyj + uszk)
ou ausy 6u$z 2 ad . d . d .
Veoug = —= —(n—L n,n,—Ii+nn,—i+nyn n
S S ax+ay+ .X'ax + xyay + xZaZ + yx ]+ ]+
nyn, — Litnn > - Ok + oy 55 Ok +n2Z — ) (usyl + Ugyj + uszk)
ou Ju ou u u u au ou
Vs- U = SX + sy + SZ }2( SX XNy SX Nz SX ynx sy 32, sy
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Ougy Ousz Ousy

ausy)
nxny( dy + ax

ou ou u ou
NyMz ( a;x + a;Z) —yNy ( a;y + a;z) (A28)

Votts = (nf +nZ) = + (n2 +n2)2 Sy+(nx+ny)

In short notation the convection-diffusion equation reads:
ar ar ar ar

where the coefficients are given by:

Dy = ugy

DZ = usy

D3 =u, (A30)

ou u ou ou Ju u
= 2 2 —SX 2 2 Sy 2 2 SZ SX Sy SX
D, = (n +n2) o T (nZ +n2) -+ (n2 +n2) 2 yny ( 5 T ok ) —n,n, ( ~+

d
3;1;z) —nyn, ( oy ausz) + (kuen, + kuyn, + ku,n,)

The hopscotch finite difference scheme is given by:

Explicit part

ri,’;ljcl (rnuk Fﬁuk)‘*' (ke — le+1k)+ (k-1 — k) + (A= CI
(A31)

Implicit part

1

3 = s (e + 2000 = ] + 2[00 — ] + 2[00 - k)

(A32)

The diffusion term is solved as follows:

Q)lQJ

Vir =V.VI = [(1 nx) —n,n yzy N, ]l+[(1—ny) Nyn,y Z—

ary . o O ar ar]
nyn, 62]] + [(1 ns) 5, ~ MMz 5o — Nyl % k
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ning; + nyn; ] >+ 2[nynyn2 — (1 —nHn.m, — (1 - ny)nxny] 353y Ly 2[nyn2n, —

a*r

(1 —n2)nmn, — (1 - nz)nxnz] —— 4 2[nZnyn, — (1 —n2)nyn, — (1 — nHn,n,| 90z

(A33)
(1 —=n2)? +nind +ninZ = 1 —2ni+ng + ngnj +nin =nj +nZ —n + n2(1- n3 —
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(1 —=n2)? +nznf +n¥nZ =1 - 2nZ4n; + ninZ + njn; = ni +nd —nZ + nZ(1—n2 -

ny)+ninZ+ninZ =nZ+n)=1-nZ

2[nynynz — (1 — n2)n,n, — (1 —n2)n,n, | = 2[nm,(n2 + n2 + n2) — 2n,n, | = —2n,n,
2[nyn2n, — (1 —ndnen, — (1 — n2) nyn,| = 2[nyn,(n2 + n2 + n) — 2nyn,| = —2n,n,
2[nZnyn, — (1 —n2)nyn, — (1 — ndnyn,| = 2[n,n,(nZ + n2 + n2) — 2n,n,| = —2n,n,

The equation for the time-dependent surfactant-convection equation is as follows:
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g—:+D13—£+DZZ—;+D33—£+D4F+D5%+D6%+D7%+D8%+D9%+

D10 :y =0 (A34)
where the coefficients are:

D5 = —(ny2 + nzz)DS = (n,% — 1)D;

D6 = —(n,* +n,*)Ds = (ny,* — 1) D

D7 = —(n,? +n,?) Dy = (n,? — 1)D; (A35)
D8 = 2nyn, Dy

D9 = 2n,n,D,

D10 = 2nyn,D;

The explicit part

rz’ﬁl = l(ngl,j,k L1 jk) + ( -tk — [jei) + ( iik—1— jks1) £ (L — Dy +

2Dg + 2Dg + 2D} i — Ds(I; itk T 02 1]k) D (I R 1k) D,(r; ikl T
Llik-1) + DS( -1k — e T 02000 — 01— _1p) F Dg( k=1~ Tijeer 020 ke1 —

Ly k- 1)‘|‘D10 k-1 = Llkrr ¥ Lmvevr — 1,0-1) (A36)

The implicit part

1 1 +1 [+l
[ = (R + 2[00 — L] + 21 -
i,j,k (14D4—2Ds—2Dg—2D-) i,j,k [ 1,7,k — +1] k] l] 1.k ]+1 k]
n+1 n+1 n+1 n+ n+1 n+ n+1 n+1
[rz;k 1 F}k+1] [r+1]k+r 1,k _D6[F]+1k+r Yl — [F]k+1+rl]k ]+

n+1 n+1 n+ n+ n+1 n+1 n+ n+
[rl] 1,k Fl}+1k+r 1]+1k F 1} 1k]+ [l]k 1 rl}k+1+r 1]k+1 F 1]k 1]+

D
2l — LA+ I e — k] (A37)
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Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification
and pharmaceutical industries. Colloids thermal, mechanical and storage properties are
highly dependent on their interface morphology and their rheological behavior.

Numerical methods provide a cheap and reliable virtual laboratory for the study
of colloids. However efficiency is a major concern to address when using numerical
methods for practical applications.

This work introduces the main building-blocks for an improved lattice Boltzmann-
based numerical tool designed for the study of colloidal rheology and interface
morphology.

The efficiency of the proposed model is enhanced by using the recently
developed and validated migrating multi-block algorithms for the lattice Boltzmann
method (LBM). The migrating multi-block was used to simulate single component, multi-
component, multiphase and single component multiphase flows. Results were validated

by experimental, numerical and analytical solutions.
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The contamination of the fluid-fluid interface influences the colloids morphology.
This issue was addressed by the introduction of the hybrid LBM for surfactant-covered
droplets. The module was used for the simulation of surfactant-covered droplet
deformation under shear and uniaxial extensional flows respectively and under
buoyancy. Validation with experimental and theoretical results was provided.

Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The
suppression of coalescence module is the part of the proposed model which facilitates
the study of colloids rheology. The model results for the relative viscosity were in
agreement with some theoretical results.

Biological suspensions such as blood are macro-colloids by nature. The study of
the blood flow in the microvasculature was heuristically approached by assuming the
red blood cells as surfactant covered droplets. The effects of interfacial tension on the
flow velocity and the droplet exclusion from the walls in parabolic flows were in
qualitative agreement with some experimental and numerical results. The Fahraeus and
the Fahraeus-Lindqvist effects were reproduced.

The proposed LBM model provides a flexible numerical platform consisting of
various modules which could be used separately or in combination for the study of a

variety of colloids and biological suspensions flow deformation problems.
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